↓ Skip to main content

Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling

Overview of attention for article published in BMC Complementary Medicine and Therapies, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

facebook
3 Facebook pages

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling
Published in
BMC Complementary Medicine and Therapies, April 2015
DOI 10.1186/s12906-015-0652-1
Pubmed ID
Authors

Ki Mo Lee, JiHye Bang, Bu Yeo Kim, In Sun Lee, Jung-Soo Han, Bang Yeon Hwang, Won Kyung Jeon

Abstract

Fructus mume (F. mume) has been used as a traditional medicine for many years in Asian countries. The present study was designed to determine the effect of a 70% ethanol extract of F. mume on white matter and hippocampal damage induced by chronic cerebral hypoperfusion. Permanent bilateral common carotid artery occlusion (BCCAo) was performed on male Wistar rats to induce chronic cerebral hypoperfusion. Daily oral administration of F. mume (200 mg/kg) was initiated 21 days after BCCAo and continued for 42 days. The experimental groups in this study were divided into three groups: a sham-operated group, a BCCAo group, and a BCCAo group that was administered with the F. mume extract. The activation of glial cells, including microglia and astrocytes, and the levels of myelin basic protein (MBP), inflammatory mediators, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and p38 mitogen-activated protein kinase (MAPK) phosphorylation were measured in brains from rats subjected to chronic BCCAo. Our results revealed that F. mume alleviates the reduction in MBP expression caused by chronic BCCAo in the white matter and the hippocampus and significantly attenuates microglial and astrocytic activation induced by chronic BCCAo in the optic tract of white matter. In addition, F. mume treatment reduced the increased expression of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β) and interleukin-6 (IL-6), as well as the activation of TLR4/MyD88 and p38 MAPK signaling, in the hippocampus of rats subjected to chronic BCCAo. Taken together, our findings demonstrate that brain injury induced by chronic BCCAo is ameliorated by the anti-inflammatory effects of F. mume via inhibition of MBP degradation, microglial and astrocytic activation, increased inflammatory mediator expression, and activated intracellular signalings, including TLR4 and p38 MAPK, implying that F. mume is potentially an effective therapeutics for the treatment of vascular dementia.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Student > Bachelor 5 14%
Student > Master 4 11%
Student > Doctoral Student 2 6%
Student > Postgraduate 2 6%
Other 4 11%
Unknown 12 33%
Readers by discipline Count As %
Medicine and Dentistry 5 14%
Neuroscience 5 14%
Biochemistry, Genetics and Molecular Biology 3 8%
Agricultural and Biological Sciences 3 8%
Veterinary Science and Veterinary Medicine 2 6%
Other 4 11%
Unknown 14 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 May 2015.
All research outputs
#17,754,724
of 22,800,560 outputs
Outputs from BMC Complementary Medicine and Therapies
#2,346
of 3,629 outputs
Outputs of similar age
#180,964
of 265,536 outputs
Outputs of similar age from BMC Complementary Medicine and Therapies
#51
of 80 outputs
Altmetric has tracked 22,800,560 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,629 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,536 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.