↓ Skip to main content

Can Randall’s plug composed of calcium oxalate form via the free particle mechanism?

Overview of attention for article published in BMC Urology, September 2017
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Can Randall’s plug composed of calcium oxalate form via the free particle mechanism?
Published in
BMC Urology, September 2017
DOI 10.1186/s12894-017-0274-7
Pubmed ID
Authors

F. Grases, O. Söhnel

Abstract

The likelihood of a Randall's plug composed of calcium oxalate monohydrate (COM) forming by the free particle mechanism in a model of kidney with a structure recently described by Robertson was examined at the most favourable conditions for the considered mechanism. The Robertson model of the kidney is used in the following development. The classical theory of crystallization was used for calculations. Initial COM nuclei were assumed to form at the beginning of the ascending loop of Henle where the supersaturation with respect to COM has been shown to reach the threshold level for spontaneous nucleation. Nucleation proceeds by a heterogeneous mechanism. The formed particles are transported in the nephron by a laminar flow of liquid with a parabolic velocity profile. Particles travel with a velocity dependent on their position in the cross-section of the nephron assumed to be straight tubule with smooth walls and without any sharp bends and kinks. These particles move faster with time as they grow as a result of being surrounded by the supersaturated liquid. Individual COM particles (crystals) can reach maximum diameter of 5.2 × 10(-6) m, i.e. 5.2 μm, at the opening of the CD and would thus always be washed out of the CD into the calyx regardless of the orientation of the CD. Agglomeration of COM crystals forms a fractal object with an apparent density lower than the density of solid COM. The agglomerate that can block the beginning of the CD is composed of more crystals than are available even during crystaluria. Moreover the settling velocity of agglomerate blocking the opening of the CD is lower than the liquid flow and thus such agglomerate would be washed out even from upward-draining CD. The free particle mechanism may be responsible for the formation of a Randall's plug composed by COM only in specific infrequent cases such as an abnormal structure of kidney. Majority of incidences of Randall's plug development by COM are caused by mechanism different from the free particle mechanism.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Researcher 3 23%
Student > Doctoral Student 2 15%
Professor 1 8%
Student > Bachelor 1 8%
Other 1 8%
Unknown 2 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 23%
Medicine and Dentistry 3 23%
Social Sciences 1 8%
Unknown 6 46%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2018.
All research outputs
#10,266,670
of 12,861,409 outputs
Outputs from BMC Urology
#219
of 327 outputs
Outputs of similar age
#203,703
of 270,039 outputs
Outputs of similar age from BMC Urology
#1
of 1 outputs
Altmetric has tracked 12,861,409 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 327 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,039 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them