↓ Skip to main content

Co-deleting Pten with Rb in retinal progenitor cells in mice results in fully penetrant bilateral retinoblastomas

Overview of attention for article published in Molecular Cancer, April 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Co-deleting Pten with Rb in retinal progenitor cells in mice results in fully penetrant bilateral retinoblastomas
Published in
Molecular Cancer, April 2015
DOI 10.1186/s12943-015-0360-y
Pubmed ID
Authors

Chencheng Xie, Huarui Lu, Alice Nomura, Eric Allan Hanse, Colleen Lynn Forster, Josh Berken Parker, Michael Andrew Linden, Chris Karasch, Timothy Curtis Hallstrom

Abstract

Rb1 is the most frequently mutated gene in the pediatric cancer retinoblastoma, and its loss causes E2F transcription factors to induce proliferation related genes. However, high E2F levels following pRB loss also induce apoptosis-promoting genes as a safeguard mechanism to suppress emergent tumors. Although p53 accumulation and apoptosis induction is believed to be a primary mechanism to eliminate cells with excess E2F activity, p53 deletion doesn't suppress RB/E2F induced apoptosis in vivo in the retina. This prompted us to test the PTEN/PI3K/AKT signaling pathway on RB/E2F apoptosis suppression in vivo, to ascertain if the PI3K pathway may provide a potential avenue for retinoblastoma therapy. We developed a mouse model in which Rb1 and Pten were conditionally deleted from retinal progenitor cells using Chx10-Cre, whereas Rbl1 (p107) was constitutively deleted. Pathway components were also tested individually by in vivo electroporation into newborn retinas for an effect on apoptosis and tumor initiation. Mouse retinal tissues were analyzed by immunohistochemistry (IHC) for proliferation, apoptosis, and pathway activation. ShRNAs were used in vitro to assess effects on apoptosis and gene expression. Co-deleting Pten with Rb1 and Rbl1 in mouse retinal progenitor cells (RPCs) causes fully penetrant bilateral retinoblastomas by 30 days and strongly suppresses Rb/E2F-induced apoptosis. In vivo electroporation of constitutively active (ca)-Pik3ca, ca-Akt, or dominant-negative (dn)-Foxo1 into apoptosis prone newborn murine retina with deleted Rb/p107 eliminate Rb/E2F induced apoptosis and induce retinoblastoma emergence. Retinal deletion of Pten activates p-AKT and p-FOXO1 signaling in incipient retinoblastoma. An unbiased shRNA screen focusing on Akt phosphorylation targets identified FOXOs as critical mediators of Rb/E2F induced apoptosis and expression of Bim and p73 pro-apoptotic genes. These data indicate that we defined a key molecular trigger involving E2F/FOXO functioning to control retinal progenitor cell homeostasis and retinoblastoma tumor initiation. We anticipate that our findings could provide contextual understanding of the proliferation of other progenitor cells, considering the high frequency of co-altered signaling from RB/E2F and PTEN/PI3K/AKT pathways in a wide variety of normal and malignant settings.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 29%
Researcher 7 21%
Other 3 9%
Student > Master 3 9%
Professor > Associate Professor 2 6%
Other 3 9%
Unknown 6 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 24%
Agricultural and Biological Sciences 5 15%
Medicine and Dentistry 5 15%
Computer Science 3 9%
Neuroscience 2 6%
Other 3 9%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2015.
All research outputs
#17,754,724
of 22,800,560 outputs
Outputs from Molecular Cancer
#1,202
of 1,720 outputs
Outputs of similar age
#180,697
of 265,147 outputs
Outputs of similar age from Molecular Cancer
#34
of 52 outputs
Altmetric has tracked 22,800,560 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,720 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,147 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.