↓ Skip to main content

Impact of brain arousal and time-on-task on autonomic nervous system activity in the wake-sleep transition

Overview of attention for article published in BMC Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of brain arousal and time-on-task on autonomic nervous system activity in the wake-sleep transition
Published in
BMC Neuroscience, April 2018
DOI 10.1186/s12868-018-0419-y
Pubmed ID
Authors

Jue Huang, Christine Ulke, Christian Sander, Philippe Jawinski, Janek Spada, Ulrich Hegerl, Tilman Hensch

Abstract

Autonomic nervous system (ANS) activity has been shown to vary with the state of brain arousal. In a previous study, this association of ANS activity with distinct states of brain arousal was demonstrated using 15-min EEG data, but without directly controlling for possible time-on-task effects. In the current study we examine ANS-activity in fine-graded EEG-vigilance stages (indicating states of brain arousal) during two conditions of a 2-h oddball task while controlling for time-on-task. In addition, we analyze the effect of time-on-task on ANS-activity while holding the level of brain arousal constant. Heart rate and skin conductance level of healthy participants were recorded during a 2-h EEG with eyes closed under simultaneous presentation of stimuli in an ignored (N = 39) and attended (N = 39) oddball condition. EEG-vigilance stages were classified using the Vigilance Algorithm Leipzig (VIGALL 2.1). The time-on-task effect was tested by dividing the EEG into four 30-min consecutive time blocks. ANS-activity was compared between EEG-vigilance stages across the entire 2 h and within each time block. We found a coherent decline of ANS-activity with declining brain arousal states, over the 2-h recording and in most cases within each 30-min block in both conditions. Furthermore, we found a significant time-on-task effect on heart rate, even when arousal was kept constant. It was most pronounced between the first and all subsequent blocks and could have been a consequence of postural change at the beginning of the experiment. Our findings contribute to the validation of VIGALL 2.1 using ANS parameters in 2-h EEG recording under oddball conditions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Student > Master 4 13%
Researcher 3 10%
Student > Bachelor 2 7%
Other 2 7%
Other 3 10%
Unknown 11 37%
Readers by discipline Count As %
Psychology 4 13%
Medicine and Dentistry 4 13%
Neuroscience 3 10%
Agricultural and Biological Sciences 1 3%
Earth and Planetary Sciences 1 3%
Other 3 10%
Unknown 14 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2019.
All research outputs
#16,532,624
of 24,323,543 outputs
Outputs from BMC Neuroscience
#720
of 1,267 outputs
Outputs of similar age
#213,961
of 332,791 outputs
Outputs of similar age from BMC Neuroscience
#15
of 26 outputs
Altmetric has tracked 24,323,543 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,267 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,791 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.