↓ Skip to main content

Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice

Overview of attention for article published in Journal of Neuroinflammation, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice
Published in
Journal of Neuroinflammation, April 2018
DOI 10.1186/s12974-018-1141-5
Pubmed ID
Authors

Yi Liu, Yuyun Zhang, Xian Zheng, Tongyong Fang, Xia Yang, Xuan Luo, Anlei Guo, Kelly A. Newell, Xu-Feng Huang, Yinghua Yu

Abstract

Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases such as Alzheimer's disease. Lipopolysaccharide (LPS, endotoxin) levels are higher in the brains of Alzheimer's disease patients and are associated with neuroinflammation and cognitive decline, while neural cholinergic signaling controls inflammation. This study aimed to examine the efficacy of galantamine, a clinically approved cholinergic agent, in alleviating LPS-induced neuroinflammation and cognitive decline as well as the associated mechanism. Mice were treated with galantamine (4 mg/kg, intraperitoneal injection) for 14 days prior to LPS exposure (intracerebroventricular injection). Cognitive tests were performed, including the Morris water maze and step-through tests. mRNA expression of the microglial marker (CD11b), astrocytic marker (GFAP), and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were examined in the hippocampus by quantitative RT-PCR. The inflammatory signaling molecule, nuclear factor-kappa B (NF-κB p65), and synapse-associated proteins (synaptophysin, SYN, and postsynaptic density protein 95, PSD-95) were examined in the hippocampus by western blotting. Furthermore, NF-κB p65 levels in microglial cells and hippocampal neurons were examined in response to LPS and galantamine. Galantamine treatment prevented LPS-induced deficits in spatial learning and memory as well as memory acquisition of the passive avoidance response. Galantamine decreased the expression of microglia and astrocyte markers (CD11b and GFAP), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and NF-κB p65 in the hippocampus of LPS-exposed mice. Furthermore, galantamine ameliorated LPS-induced loss of synapse-associated proteins (SYN and PSD-95) in the hippocampus. In the in vitro study, LPS increased NF-κB p65 levels in microglia (BV-2 cells); the supernatant of LPS-stimulated microglia (Mi-sup), but not LPS, decreased the viability of hippocampal neuronal cells (HT-22 cells) and increased NF-κB p65 levels as well as expression of pro-inflammatory cytokines (IL-1β, IL-6) in HT-22 cells. Importantly, galantamine reduced the inflammatory response not only in the BV-2 microglia cell line, but also in the HT-22 hippocampal neuronal cell line. These findings indicate that galantamine could be a promising treatment to improve endotoxin-induced cognitive decline and neuroinflammation in neurodegenerative diseases.

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 17 21%
Student > Bachelor 11 13%
Student > Ph. D. Student 7 9%
Student > Doctoral Student 6 7%
Lecturer 4 5%
Other 10 12%
Unknown 27 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 13%
Neuroscience 11 13%
Pharmacology, Toxicology and Pharmaceutical Science 8 10%
Medicine and Dentistry 5 6%
Agricultural and Biological Sciences 4 5%
Other 8 10%
Unknown 35 43%

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2018.
All research outputs
#2,032,180
of 12,861,409 outputs
Outputs from Journal of Neuroinflammation
#277
of 1,490 outputs
Outputs of similar age
#66,067
of 270,040 outputs
Outputs of similar age from Journal of Neuroinflammation
#4
of 24 outputs
Altmetric has tracked 12,861,409 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,490 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,040 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.