↓ Skip to main content

Lack of Evidence for Ectopic Sprouting of Genetically Labeled Aβ Touch Afferents in Inflammatory and Neuropathic Trigeminal Pain

Overview of attention for article published in Molecular Pain, April 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lack of Evidence for Ectopic Sprouting of Genetically Labeled Aβ Touch Afferents in Inflammatory and Neuropathic Trigeminal Pain
Published in
Molecular Pain, April 2015
DOI 10.1186/s12990-015-0017-2
Pubmed ID
Authors

Yi Zhang, Yong Chen, Wolfgang Liedtke, Fan Wang

Abstract

Mechanical and in particular tactile allodynia is a hallmark of chronic pain in which innocuous touch becomes painful. Previous cholera toxin B (CTB)-based neural tracing experiments and electrophysiology studies had suggested that aberrant axon sprouting from touch sensory afferents into pain-processing laminae after injury is a possible anatomical substrate underlying mechanical allodynia. This hypothesis was later challenged by experiments using intra-axonal labeling of A-fiber neurons, as well as single-neuron labeling of electrophysiologically identified sensory neurons. However, no studies have used genetically labeled neurons to examine this issue, and most studies were performed on spinal but not trigeminal sensory neurons which are the relevant neurons for orofacial pain, where allodynia oftentimes plays a dominant clinical role. We recently discovered that parvalbumin::Cre (Pv::Cre) labels two types of Aβ touch neurons in trigeminal ganglion. Using a Pv::CreER driver and a Cre-dependent reporter mouse, we specifically labeled these Aβ trigeminal touch afferents by timed taxomifen injection prior to inflammation or infraorbital nerve injury (ION transection). We then examined the peripheral and central projections of labeled axons into the brainstem caudalis nucleus after injuries vs controls. We found no evidence for ectopic sprouting of Pv::CreER labeled trigeminal Aβ axons into the superficial trigeminal noci-receptive laminae. Furthermore, there was also no evidence for peripheral sprouting. CreER-based labeling prior to injury precluded the issue of phenotypic changes of neurons after injury. Our results suggest that touch allodynia in chronic orofacial pain is unlikely caused by ectopic sprouting of Aβ trigeminal afferents.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 24%
Student > Ph. D. Student 8 18%
Student > Master 6 13%
Student > Bachelor 4 9%
Student > Doctoral Student 3 7%
Other 8 18%
Unknown 5 11%
Readers by discipline Count As %
Neuroscience 17 38%
Medicine and Dentistry 9 20%
Agricultural and Biological Sciences 5 11%
Biochemistry, Genetics and Molecular Biology 3 7%
Psychology 2 4%
Other 3 7%
Unknown 6 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 February 2016.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Molecular Pain
#447
of 669 outputs
Outputs of similar age
#193,718
of 278,951 outputs
Outputs of similar age from Molecular Pain
#13
of 14 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 669 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,951 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.