↓ Skip to main content

Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells

Overview of attention for article published in BMC Cancer, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells
Published in
BMC Cancer, April 2018
DOI 10.1186/s12885-018-4389-3
Pubmed ID
Authors

Brian J. Morrison, Jason C. Steel, John C. Morris

Abstract

It has been proposed that cancer establishment, maintenance, and recurrence may be attributed to a unique population of tumor cells termed cancer-initiating cells (CICs) that may include characteristics of putative cancer stem cell-like cells. Studies in lung cancer have shown that such cells can be enriched and propagated in vitro by culturing tumor cells in serum-free suspension as tumorspheres. CICs have been characterized for their phenotype, stem cell-like qualities, and their role in establishing tumor and maintaining tumor growth. Less is known about the interaction of CICs with the immune system. We established CIC-enriched tumorspheres from murine TC-1 lung cancer cells, expressing human papillomavirus 16 (HPV-16) E6/E7 antigens, and evaluated their susceptibility to antitumor immune responses both in vitro and in vivo. TC-1 CICs demonstrated reduced expression of surface major histocompatibility complex (MHC)-I molecules compared to non-CICs. We similarly determined decreased MHC-I expression in five of six human lung cancer cell lines cultured under conditions enriching for CICs. In vivo, TC-1 cells enriched for CICs were resistant to human papillomavirus 16 E6/E7 peptide vaccine-mediated killing. We found that vaccinated mice challenged with CIC enriched tumorspheres demonstrated shorter survivals and showed significantly fewer CD8+ tumor infiltrating lymphocytes compared to CIC non-enriched challenged mice. Furthermore, cultured cytotoxic T lymphocytes (CTLs) from vaccinated mice demonstrated reduced capacity to lyse TC-1 cells enriched for CICs compared to non-enriched TC-1 cells. Following treatment with IFN-γ, both CIC enriched and non-enriched TC-1 cells expressed similar levels of MHC-I, and the increased MHC-I expression on CICs resulted in greater CTL-mediated tumor lysis and improved tumor-free survival in mice. These results suggest that the attenuated expression of MHC-I molecules by CICs represents a potential strategy of CICs to escape immune recognition, and that the development of successful immunotherapy strategies targeting CICs may decrease their resistance to T cell-mediated immune detection by enhancing CIC MHC-I expression.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 19%
Student > Master 13 13%
Student > Bachelor 10 10%
Researcher 7 7%
Student > Doctoral Student 6 6%
Other 11 11%
Unknown 32 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 19%
Medicine and Dentistry 17 18%
Immunology and Microbiology 13 13%
Agricultural and Biological Sciences 6 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 3%
Other 8 8%
Unknown 32 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2018.
All research outputs
#20,941,392
of 23,577,654 outputs
Outputs from BMC Cancer
#6,664
of 8,530 outputs
Outputs of similar age
#289,122
of 327,913 outputs
Outputs of similar age from BMC Cancer
#178
of 217 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,530 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,913 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 217 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.