↓ Skip to main content

Radiation dose-rate effects on gene expression for human biodosimetry

Overview of attention for article published in BMC Medical Genomics, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
93 Dimensions

Readers on

mendeley
37 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Radiation dose-rate effects on gene expression for human biodosimetry
Published in
BMC Medical Genomics, May 2015
DOI 10.1186/s12920-015-0097-x
Pubmed ID
Authors

Shanaz A. Ghandhi, Lubomir B. Smilenov, Carl D. Elliston, Mashkura Chowdhury, Sally A. Amundson

Abstract

The effects of dose-rate and its implications on radiation biodosimetry methods are not well studied in the context of large-scale radiological scenarios. There are significant health risks to individuals exposed to an acute dose, but a realistic scenario would include exposure to both high and low dose-rates, from both external and internal radioactivity. It is important therefore, to understand the biological response to prolonged exposure; and further, discover biomarkers that can be used to estimate damage from low-dose rate exposures and propose appropriate clinical treatment. We irradiated human whole blood ex vivo to three doses, 0.56 Gy, 2.23 Gy and 4.45 Gy, using two dose rates: acute, 1.03 Gy/min and a low dose-rate, 3.1 mGy /min. After 24 h, we isolated RNA from blood cells and these were hybridized to Agilent Whole Human genome microarrays. We validated the microarray results using qRT-PCR. Microarray results showed that there were 454 significantly differentially expressed genes after prolonged exposure to all doses. After acute exposure, 598 genes were differentially expressed in response to all doses. Gene ontology terms enriched in both sets of genes were related to immune processes and B-cell mediated immunity. Genes responding to acute exposure were also enriched in functions related to natural killer cell activation and cell-to-cell signaling. As expected, the p53 pathway was found to be significantly enriched at all doses and by both dose-rates of radiation. A support vectors machine classifier was able to distinguish between dose-rates with 100 % accuracy using leave-one-out cross-validation. In this study we found that low dose-rate exposure can result in distinctive gene expression patterns compared with acute exposures. We were able to successfully distinguish low dose-rate exposed samples from acute dose exposed samples at 24 h, using a gene expression-based classifier. These genes are candidates for further testing as markers to classify exposure based on dose-rate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 19%
Student > Bachelor 4 11%
Researcher 4 11%
Student > Ph. D. Student 3 8%
Student > Doctoral Student 2 5%
Other 6 16%
Unknown 11 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 16%
Computer Science 3 8%
Medicine and Dentistry 3 8%
Agricultural and Biological Sciences 2 5%
Engineering 2 5%
Other 8 22%
Unknown 13 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2016.
All research outputs
#14,812,046
of 22,805,349 outputs
Outputs from BMC Medical Genomics
#606
of 1,223 outputs
Outputs of similar age
#147,575
of 264,481 outputs
Outputs of similar age from BMC Medical Genomics
#13
of 26 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,223 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,481 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.