↓ Skip to main content

A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy- first investigations of single biological cells

Overview of attention for article published in BioMedical Engineering OnLine, April 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy- first investigations of single biological cells
Published in
BioMedical Engineering OnLine, April 2015
DOI 10.1186/s12938-015-0024-6
Pubmed ID
Authors

Ahmed Alrifaiy, Johan Borg, Olof A Lindahl, Kerstin Ramser

Abstract

The response and the reaction of the brain system to hypoxia is a vital research subject that requires special instrumentation. With this research subject in focus, a new multifunctional lab-on-a-chip (LOC) system with control over the oxygen content for studies on biological cells was developed. The chip was designed to incorporate the patch clamp technique, optical tweezers and absorption spectroscopy. The performance of the LOC was tested by a series of experiments. The oxygen content within the channels of the LOC was monitored by an oxygen sensor and verified by simultaneously studying the oxygenation state of chicken red blood cells (RBCs) with absorption spectra. The chicken RBCs were manipulated optically and steered in three dimensions towards a patch-clamp micropipette in a closed microfluidic channel. The oxygen level within the channels could be changed from a normoxic value of 18% O 2 to an anoxic value of 0.0-0.5% O 2. A time series of 3 experiments were performed, showing that the spectral transfer from the oxygenated to the deoxygenated state occurred after about 227 ± 1 s and a fully developed deoxygenated spectrum was observed after 298 ± 1 s, a mean value of 3 experiments. The tightness of the chamber to oxygen diffusion was verified by stopping the flow into the channel system while continuously recording absorption spectra showing an unchanged deoxygenated state during 5400 ± 2 s. A transfer of the oxygenated absorption spectra was achieved after 426 ± 1 s when exposing the cell to normoxic buffer. This showed the long time viability of the investigated cells. Successful patching and sealing were established on a trapped RBC and the whole-cell access (Ra) and membrane (Rm) resistances were measured to be 5.033 ± 0.412 M Ω and 889.7 ± 1.74 M Ω respectively.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Korea, Republic of 1 5%
Unknown 20 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 27%
Other 3 14%
Student > Ph. D. Student 3 14%
Student > Bachelor 3 14%
Student > Master 3 14%
Other 1 5%
Unknown 3 14%
Readers by discipline Count As %
Engineering 5 23%
Biochemistry, Genetics and Molecular Biology 3 14%
Neuroscience 3 14%
Physics and Astronomy 3 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Other 3 14%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2015.
All research outputs
#20,273,512
of 22,805,349 outputs
Outputs from BioMedical Engineering OnLine
#693
of 824 outputs
Outputs of similar age
#223,832
of 265,103 outputs
Outputs of similar age from BioMedical Engineering OnLine
#18
of 20 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 824 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,103 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.