↓ Skip to main content

The uniform-score gene set analysis for identifying common pathways associated with different diabetes traits

Overview of attention for article published in BMC Genomics, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The uniform-score gene set analysis for identifying common pathways associated with different diabetes traits
Published in
BMC Genomics, April 2015
DOI 10.1186/s12864-015-1515-3
Pubmed ID
Authors

Hao Mei, Lianna Li, Shijian Liu, Fan Jiang, Michael Griswold, Thomas Mosley

Abstract

Genetic heritability and expression study have shown that different diabetes traits have common genetic components and pathways. A computationally efficient pathway analysis of GWAS results will benefit post-GWAS study of SNP associations and identification of common genetic pathways from diabetes GWAS can help to improve understanding of the disease pathogenesis. We proposed a uniform-score gene-set analysis (USGSA) with implemented package to unify different gene measures by a uniform score for identifying pathways from GWAS data, and use a pre-generated permutation distribution table to quickly obtain multiple-testing adjusted p-value. Simulation studies of uniform score for four gene measures (minP, 2ndP, simP and fishP) have shown that USGSA has strictly controlled family-wise error rate. The power depends on types of gene measure. USGSA with a two-stage study strategy was applied to identify common pathways associated with diabetes traits based on public dbGaP GWAS results. The study identified 7 gene sets that contain binding motifs at promoter region of component genes for 5 transcription factors (TFs) of FOXO4, TCF3, NFAT, VSX1 and POU2F1, and 1 microRNA of mir-218. These gene sets include 25 common genes that are among top 5% of the gene associations over genome for all GWAS. Previous evidences showed that nearly all of these genes are mainly expressed in the brain. USGSA is a computationally efficient approach for pathway analysis of GWAS data with promoted interpretability and comparability. The pathway analysis suggested that different diabetes traits share common pathways and component genes are potentially regulated by common TFs and microRNA. The result also indicated that the central nervous system has a critical role in diabetes pathogenesis. The findings will be important in formulating novel hypotheses for guiding follow-up studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 19%
Student > Ph. D. Student 3 14%
Professor > Associate Professor 2 10%
Student > Master 2 10%
Other 1 5%
Other 3 14%
Unknown 6 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 43%
Biochemistry, Genetics and Molecular Biology 2 10%
Nursing and Health Professions 1 5%
Medicine and Dentistry 1 5%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2016.
All research outputs
#14,225,412
of 22,805,349 outputs
Outputs from BMC Genomics
#5,699
of 10,650 outputs
Outputs of similar age
#139,483
of 265,337 outputs
Outputs of similar age from BMC Genomics
#149
of 267 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,650 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,337 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 267 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.