↓ Skip to main content

Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma

Overview of attention for article published in Molecular Cancer, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
57 Mendeley
citeulike
3 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma
Published in
Molecular Cancer, March 2015
DOI 10.1186/s12943-015-0339-8
Pubmed ID
Authors

Elizabeth F Wiseman, Xi Chen, Namshik Han, Aaron Webber, Zongling Ji, Andrew D Sharrocks, Yeng S Ang

Abstract

Survival rates for oesophageal adenocarcinoma (OAC) remain disappointingly poor and current conventional treatment modalities have minimal impact on long-term survival. This is partly due to a lack of understanding of the molecular changes that occur in this disease. Previous studies have indicated that the transcription factor FOXM1 is commonly upregulated in this cancer type but the impact of this overexpression on gene expression in the context of OAC is largely unknown. FOXM1 does not function alone but works alongside the antagonistically-functioning co-regulatory MMB and DREAM complexes. To establish how FOXM1 affects gene expression in OAC we have identified the FOXM1 target gene network in OAC-derived cells using ChIP-seq and determined the expression of both its coregulatory partners and members of this target gene network in OAC by digital transcript counting using the Nanostring gene expression assay. We find co-upregulation of FOXM1 with its target gene network in OAC. Furthermore, we find changes in the expression of its coregulatory partners, including co-upregulation of LIN9 and, surprisingly, reduced expression of LIN54. Mechanistically, we identify LIN9 as the direct binding partner for FOXM1 in the MMB complex. In the context of OAC, both coregulator (eg LIN54) and target gene (eg UHRF1) expression levels are predictive of disease stage. Together our data demonstrate that there are global changes to the FOXM1 regulatory network in OAC and the expression of components of this network help predict cancer prognosis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 23%
Student > Bachelor 11 19%
Researcher 8 14%
Student > Master 4 7%
Professor 2 4%
Other 5 9%
Unknown 14 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 26%
Agricultural and Biological Sciences 12 21%
Medicine and Dentistry 6 11%
Engineering 4 7%
Nursing and Health Professions 2 4%
Other 3 5%
Unknown 15 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 April 2015.
All research outputs
#17,758,492
of 22,805,349 outputs
Outputs from Molecular Cancer
#1,202
of 1,720 outputs
Outputs of similar age
#180,077
of 263,417 outputs
Outputs of similar age from Molecular Cancer
#34
of 54 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,720 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,417 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.