↓ Skip to main content

Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers

Overview of attention for article published in BMC Bioinformatics, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers
Published in
BMC Bioinformatics, May 2018
DOI 10.1186/s12859-018-2148-8
Pubmed ID
Authors

Deborah Galpert, Alberto Fernández, Francisco Herrera, Agostinho Antunes, Reinaldo Molina-Ruiz, Guillermin Agüero-Chapin

Abstract

The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Ph. D. Student 6 19%
Student > Doctoral Student 3 10%
Other 3 10%
Lecturer 1 3%
Other 3 10%
Unknown 9 29%
Readers by discipline Count As %
Computer Science 5 16%
Biochemistry, Genetics and Molecular Biology 3 10%
Agricultural and Biological Sciences 3 10%
Medicine and Dentistry 2 6%
Engineering 2 6%
Other 5 16%
Unknown 11 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2018.
All research outputs
#13,357,452
of 23,047,237 outputs
Outputs from BMC Bioinformatics
#4,032
of 7,319 outputs
Outputs of similar age
#163,855
of 326,458 outputs
Outputs of similar age from BMC Bioinformatics
#42
of 105 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,319 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,458 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 105 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.