↓ Skip to main content

Quantification of three-dimensional computed tomography angiography for evaluating coronary luminal stenosis using digital subtraction angiography as the standard of reference

Overview of attention for article published in BioMedical Engineering OnLine, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantification of three-dimensional computed tomography angiography for evaluating coronary luminal stenosis using digital subtraction angiography as the standard of reference
Published in
BioMedical Engineering OnLine, May 2015
DOI 10.1186/s12938-015-0048-y
Pubmed ID
Authors

Wei Guo, Xin Liu, Zhifan Gao, Sandeep Pirbhulal, Wenhua Huang, Wan-Hua Lin, Heye Zhang, Ning Tan, Yuan-Ting Zhang

Abstract

We sought to evaluate the accuracy of quantitative three-dimensional (3D) CT angiography (CTA) for the assessment of coronary luminal stenosis using digital subtraction angiography (DSA) as the standard of reference. Twenty-three patients with 54 lesions were referred for CTA followed by DSA. The CTA scans were performed with 256-slice spiral CT. 3D CTA were reconstructed from two-dimensional CTA imaging sequences in order to extract the following quantitative indices: minimal lumen diameter, percent diameter stenosis (%DS), minimal lumen area, and percent area stenosis (%AS). Correlation and limits of agreement were calculated using Pearson correlation and Bland-Altman analysis, respectively. The diagnostic performance and the diagnostic concordance of 3D CTA-derived anatomic parameters (%DS, %AS) for the detection of severe coronary arterial stenosis (as assessed by DSA) were presented as sensitivity, specificity, diagnostic accuracy, and Kappa statistics. Of which vessels with %DS >50% or with %AS >75% were identified as severe coronary arterial lesions. The correlations of the anatomic parameters between 3D CTA and DSA were significant (r = 0.51-0.74, P < 0.001). Bland-Altman analysis confirmed that the mean differences were small (from -1.11 to 27.39%), whereas the limits of agreement were relatively wide (from ±28.07 to ±138.64%). Otherwise, the diagnostic accuracy (74.1% with 58.3% sensitivity and 86.7% specificity for DS%; 74.1% with 45.8% sensitivity and 96.7% specificity for %AS) and the diagnostic concordance (k = 0.46 for DS%; 0.45 for %AS) of 3D CTA-derived anatomic parameters for the detection of severe stenosis were moderate. 3D advanced imaging reconstruction technique is a helpful tool to promote the use of CTA as an alternative to assess luminal stenosis in clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 29%
Student > Doctoral Student 2 10%
Student > Bachelor 2 10%
Student > Postgraduate 2 10%
Student > Master 2 10%
Other 3 14%
Unknown 4 19%
Readers by discipline Count As %
Medicine and Dentistry 8 38%
Computer Science 3 14%
Engineering 3 14%
Physics and Astronomy 1 5%
Unknown 6 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2015.
All research outputs
#17,285,668
of 25,373,627 outputs
Outputs from BioMedical Engineering OnLine
#459
of 867 outputs
Outputs of similar age
#168,135
of 280,686 outputs
Outputs of similar age from BioMedical Engineering OnLine
#19
of 26 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 867 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,686 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.