Title |
Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia
|
---|---|
Published in |
Journal of Neuroinflammation, May 2015
|
DOI | 10.1186/s12974-015-0330-8 |
Pubmed ID | |
Authors |
Alexandre Savard, Marie-Elsa Brochu, Mathilde Chevin, Clémence Guiraut, Djordje Grbic, Guillaume Sébire |
Abstract |
Inflammation due to remote pathogen exposure combined to hypoxia/ischemia (HI) is one of the most common causes of neonatal encephalopathy affecting at-term or near-term human newborn, which will consequently develop cerebral palsy. Within term-equivalent rat brains exposed to systemic lipopolysaccharide (LPS) plus HI, it was previously showed that neurons produce IL-1β earlier than do glial cells, and that blocking IL-1 was neuroprotective. To further define the mechanisms whereby IL-1 exerts its neurotoxic effect, we hypothesize that IL-1β plays a pivotal role in a direct and/or indirect mechanistic loop of neuronal self-injury through matrix metalloproteinase (MMP)-9. An established preclinical rat model of LPS+HI-induced neonatal encephalopathy was used. In situ hybridization, ELISA, and immunolabeling techniques were employed. Selective blocking compounds allowed addressing the respective roles of IL-1 and MMP-9. In LPS+HI-exposed forebrains, neuronal IL-1β was first detected in infarcted neocortical and striatal areas and later in glial cells of the adjacent white matter. Neuronal IL-1β played a key role: (i) in the early post-HI exacerbation of neuroinflammation and (ii) in generating both core and penumbral infarcted cerebral areas. Systemically administered IL-1 receptor antagonist (IL-1Ra) reached the brain and bound to the neocortical and deep gray neuronal membranes. Then, IL-1Ra down-regulated IL-1β mRNA and MMP-9 neuronal synthesis. Immediately post-HI, neuronal IL-1β up-regulated cytokine-induced neutrophil chemoattractant (CINC-1), monocyte chemoattractant protein-1 (MCP-1), and inducible nitric oxide synthase. MMP-9 would disrupt the blood-brain barrier, which, combined to CINC-1 up-regulation, would play a role in polymorphonuclear cell (PMN) infiltration into the LPS+HI-exposed brain. IL-1β blockade prevented PMN infiltration and oriented the phenotype of macrophagic/microglial cells towards anti-inflammatory and neurotrophic M2 profile. IL-1β increased the expression of activated caspase-3 and of receptor-interacting-protein (RIP)-3 within infarcted forebrain area. Such apoptotic and necroptotic pathway activations were prevented by IL-1Ra, as well as ensuing cerebral palsy-like brain damage and motor impairment. This work uncovered a new paradigm of neuronal self-injury orchestrated by neuronal synthesis of IL-1β and MMP-9. In addition, it reinforced the translational neuroprotective potential of IL-1 blockers to alleviate human perinatal brain injuries. |
Twitter Demographics
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 3 | 100% |
Demographic breakdown
Type | Count | As % |
---|---|---|
Members of the public | 3 | 100% |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 47 | 100% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Student > Ph. D. Student | 7 | 15% |
Student > Doctoral Student | 7 | 15% |
Student > Bachelor | 6 | 13% |
Researcher | 4 | 9% |
Student > Master | 4 | 9% |
Other | 7 | 15% |
Unknown | 12 | 26% |
Readers by discipline | Count | As % |
---|---|---|
Neuroscience | 12 | 26% |
Medicine and Dentistry | 5 | 11% |
Nursing and Health Professions | 4 | 9% |
Psychology | 4 | 9% |
Agricultural and Biological Sciences | 4 | 9% |
Other | 6 | 13% |
Unknown | 12 | 26% |