↓ Skip to main content

Mitochondrial phylogenomics and genetic relationships of closely related pine moth (Lasiocampidae: Dendrolimus) species in China, using whole mitochondrial genomes

Overview of attention for article published in BMC Genomics, June 2015
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mitochondrial phylogenomics and genetic relationships of closely related pine moth (Lasiocampidae: Dendrolimus) species in China, using whole mitochondrial genomes
Published in
BMC Genomics, June 2015
DOI 10.1186/s12864-015-1566-5
Pubmed ID
Authors

Jie Qin, Yanzhou Zhang, Xin Zhou, Xiangbo Kong, Shujun Wei, Robert D Ward, Ai-bing Zhang

Abstract

Pine moths (Lepidoptera; Bombycoidea; Lasiocampidae: Dendrolimus spp.) are among the most serious insect pests of forests, especially in southern China. Although COI barcodes (a standardized portion of the mitochondrial cytochrome c oxidase subunit I gene) can distinguish some members of this genus, the evolutionary relationships of the three morphospecies Dendrolimus punctatus, D. tabulaeformis and D. spectabilis have remained largely unresolved. We sequenced whole mitochondrial genomes of eight specimens, including D. punctatus wenshanensis. This is an unambiguous subspecies of D. punctatus, and was used as a reference for inferring the relationships of the other two morphospecies of the D. punctatus complex. We constructed phylogenetic trees from this data, including twelve published mitochondrial genomes of other Bombycoidea species, and examined the relationships of the Dendrolimus taxa using these trees and the genomic features of the mitochondrial genome. The eight fully sequenced mitochondrial genomes from the three morphospecies displayed similar genome structures as other Bombycoidea species in terms of gene content, base composition, level of overall AT-bias and codon usage. However, the Dendrolimus genomes possess a unique feature in the large ribosomal 16S RNA subunits (rrnL), which are more than 60 bp longer than other members of the superfamily and have a higher AC proportion. The eight mitochondrial genomes of Dendrolimus were highly conservative in many aspects, for example with identical stop codons and overlapping regions. But there were many differences in start codons, intergenic spacers, and numbers of mismatched base pairs of tRNA (transfer RNA genes). Our results, based on phylogenetic trees, genetic distances, species delimitation and genomic features (such as intergenic spacers) of the mitochondrial genome, indicated that D. tabulaeformis is as close to D. punctatus as is D. punctatus wenshanensis, whereas D. spectabilis evolved independently from D. tabulaeformis and D. punctatus. Whole mitochondrial DNA phylogenies showed that D. spectabilis formed a well-supported monophyletic clade, with a clear species boundary separating it from the other congeners examined here. However, D. tabulaeformis often clustered with D. punctatus and with the subspecies D. punctatus wenshanensis. Genetic distance analyses showed that the distance between D. tabulaeformis and D. punctatus is generally less than the intraspecific distance of D. punctatus and its subspecies D. punctatus wenshanensis. In the species delimitation analysis of Poisson Tree Processes (PTP), D. tabulaeformis, D. punctatus and D. punctatus wenshanensis clustered into a putative species separated from D. spectabilis. In comparison with D. spectabilis, D. tabulaeformis and D. punctatus also exhibit a similar structure in intergenic spacer characterization. These different types of evidence suggest that D. tabulaeformis is very close to D. punctatus and its subspecies D. punctatus wenshanensis, and is likely to be another subspecies of D. punctatus. Whole mitochondrial genomes possess relatively rich genetic information compared with the traditional use of single or multiple genes for phylogenetic purposes. They can be used to better infer phylogenetic relationships and degrees of relatedness of taxonomic groups, at least from the aspect of maternal lineage: caution should be taken due to the maternal-only inheritance of this genome. Our results indicate that D. spectabilis is an independent lineage, while D. tabulaeformis shows an extremely close relationship to D. punctatus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Spain 1 2%
Canada 1 2%
Unknown 38 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 22%
Researcher 7 17%
Student > Master 6 15%
Student > Bachelor 3 7%
Student > Doctoral Student 1 2%
Other 4 10%
Unknown 11 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 49%
Biochemistry, Genetics and Molecular Biology 4 10%
Environmental Science 3 7%
Unspecified 1 2%
Medicine and Dentistry 1 2%
Other 0 0%
Unknown 12 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 June 2015.
All research outputs
#17,760,015
of 22,808,725 outputs
Outputs from BMC Genomics
#7,565
of 10,651 outputs
Outputs of similar age
#180,191
of 267,109 outputs
Outputs of similar age from BMC Genomics
#182
of 238 outputs
Altmetric has tracked 22,808,725 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,651 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,109 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 238 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.