↓ Skip to main content

Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis

Overview of attention for article published in Journal of Neuroinflammation, May 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#5 of 2,660)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
22 news outlets
blogs
3 blogs
twitter
20 X users
facebook
2 Facebook pages

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis
Published in
Journal of Neuroinflammation, May 2018
DOI 10.1186/s12974-018-1184-7
Pubmed ID
Authors

Sergey Kalinin, Marta González-Prieto, Hannah Scheiblich, Lucia Lisi, Handojo Kusumo, Michael T. Heneka, Jose L. M. Madrigal, Subhash C. Pandey, Douglas L. Feinstein

Abstract

Microglial activation contributes to the neuropathology associated with chronic alcohol exposure and withdrawal, including the expression of inflammatory and anti-inflammatory genes. In the current study, we examined the transcriptome of primary rat microglial cells following incubation with alcohol alone, or alcohol together with a robust inflammatory stimulus. Primary microglia were prepared from mixed rat glial cultures. Cells were incubated with 75 mM ethanol alone or with proinflammatory cytokines ("TII": IL1β, IFNγ, and TNFα). Isolated mRNA was used for RNAseq analysis and qPCR. Effects of alcohol on phagocytosis were determined by uptake of oligomeric amyloid beta. Alcohol induced nitrite production in control cells and increased nitrite production in cells co-treated with TII. RNAseq analysis of microglia exposed for 24 h to alcohol identified 312 differentially expressed mRNAs ("Alc-DEs"), with changes confirmed by qPCR analysis. Gene ontology analysis identified phagosome as one of the highest-ranking KEGG pathways including transcripts regulating phagocytosis. Alcohol also increased several complement-related mRNAs that have roles in phagocytosis, including C1qa, b, and c; C3; and C3aR1. RNAseq analysis identified over 3000 differentially expressed mRNAs in microglia following overnight incubation with TII; and comparison to the group of Alc-DEs revealed 87 mRNAs modulated by alcohol but not by TII, including C1qa, b, and c. Consistent with observed changes in phagocytosis-related mRNAs, the uptake of amyloid beta1-42, by primary microglia, was reduced by alcohol. Our results define alterations that occur to microglial gene expression following alcohol exposure and suggest that alcohol effects on phagocytosis could contribute to the development of Alzheimer's disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 76 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 16%
Student > Bachelor 10 13%
Professor 9 12%
Researcher 6 8%
Student > Master 6 8%
Other 13 17%
Unknown 20 26%
Readers by discipline Count As %
Neuroscience 16 21%
Biochemistry, Genetics and Molecular Biology 9 12%
Medicine and Dentistry 7 9%
Agricultural and Biological Sciences 4 5%
Social Sciences 3 4%
Other 12 16%
Unknown 25 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 202. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2018.
All research outputs
#163,623
of 23,055,429 outputs
Outputs from Journal of Neuroinflammation
#5
of 2,660 outputs
Outputs of similar age
#4,178
of 326,852 outputs
Outputs of similar age from Journal of Neuroinflammation
#1
of 73 outputs
Altmetric has tracked 23,055,429 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,660 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,852 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.