↓ Skip to main content

Novel therapeutics for coronary artery disease from genome-wide association study data

Overview of attention for article published in BMC Medical Genomics, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
peer_reviews
1 peer review site

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Novel therapeutics for coronary artery disease from genome-wide association study data
Published in
BMC Medical Genomics, May 2015
DOI 10.1186/1755-8794-8-s2-s1
Pubmed ID
Authors

Mani P Grover, Sara Ballouz, Kaavya A Mohanasundaram, Richard A George, Andrzej Goscinski, Tamsyn M Crowley, Craig D H Sherman, Merridee A Wouters

Abstract

Coronary artery disease (CAD), one of the leading causes of death globally, is influenced by both environmental and genetic risk factors. Gene-centric genome-wide association studies (GWAS) involving cases and controls have been remarkably successful in identifying genetic loci contributing to CAD. Modern in silico platforms, such as candidate gene prediction tools, permit a systematic analysis of GWAS data to identify candidate genes for complex diseases like CAD. Subsequent integration of drug-target data from drug databases with the predicted candidate genes can potentially identify novel therapeutics suitable for repositioning towards treatment of CAD. Previously, we were able to predict 264 candidate genes and 104 potential therapeutic targets for CAD using Gentrepid (http://www.gentrepid.org), a candidate gene prediction platform with two bioinformatic modules to reanalyze Wellcome Trust Case-Control Consortium GWAS data. In an expanded study, using five bioinformatic modules on the same data, Gentrepid predicted 647 candidate genes and successfully replicated 55% of the candidate genes identified by the more powerful CARDIoGRAMplusC4D consortium meta-analysis. Hence, Gentrepid was capable of enhancing lower quality genotype-phenotype data, using an independent knowledgebase of existing biological data. Here, we used our methodology to integrate drug data from three drug databases: the Therapeutic Target Database, PharmGKB and Drug Bank, with the 647 candidate gene predictions from Gentrepid. We utilized known CAD targets, the scientific literature, existing drug data and the CARDIoGRAMplusC4D meta-analysis study as benchmarks to validate Gentrepid predictions for CAD. Our analysis identified a total of 184 predicted candidate genes as novel therapeutic targets for CAD, and 981 novel therapeutics feasible for repositioning in clinical trials towards treatment of CAD. The benchmarks based on known CAD targets and the scientific literature showed that our results were significant (p < 0.05). We have demonstrated that available drugs may potentially be repositioned as novel therapeutics for the treatment of CAD. Drug repositioning can save valuable time and money spent on preclinical and phase I clinical studies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 14%
Student > Bachelor 6 14%
Researcher 6 14%
Student > Master 4 9%
Student > Postgraduate 3 7%
Other 6 14%
Unknown 12 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 21%
Medicine and Dentistry 7 16%
Computer Science 4 9%
Agricultural and Biological Sciences 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Other 5 12%
Unknown 12 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 July 2015.
All research outputs
#14,816,612
of 22,813,792 outputs
Outputs from BMC Medical Genomics
#606
of 1,223 outputs
Outputs of similar age
#147,142
of 265,894 outputs
Outputs of similar age from BMC Medical Genomics
#14
of 28 outputs
Altmetric has tracked 22,813,792 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,223 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,894 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.