↓ Skip to main content

Evidence that histone H1 is dispensable for proper meiotic recombination in budding yeast

Overview of attention for article published in BMC Research Notes, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evidence that histone H1 is dispensable for proper meiotic recombination in budding yeast
Published in
BMC Research Notes, June 2015
DOI 10.1186/s13104-015-1246-1
Pubmed ID
Authors

George S Brush

Abstract

Histone H1, referred to as the linker histone, associates with the nucleosome core particle. While there is indication that the budding yeast version of histone H1 (Hho1) contributes to regulation of chromatin structure and certain chromatin-related processes, such as DNA double-strand break repair, cells lacking Hho1 are healthy and display subtle phenotypes. A recent report has revealed that Hho1 is required for optimal sporulation. The studies described here were conducted to determine whether Hho1 influences meiotic recombination, an event that occurs during sporulation, involves generation and repair of DNA double-strand breaks, and is critical for spore viability. Through tetrad analysis, cells with or without Hho1 were compared for meiotic reciprocal recombination events within several chromosome XV intervals. Parameters investigated included crossover frequency (genetic map distance) and crossover interference. No significant differences were detected between the two cell types. In agreement with earlier studies, spore viability was not affected by Hho1 absence. These data suggest that complete absence of Hho1 from chromatin does not affect reciprocal recombination between homologous chromosomes during meiosis. Therefore, the basal level of Hho1 that remains after its reported depletion early in meiosis is unlikely to be important for regulating recombination. Furthermore, the subsequent accumulation of Hho1 as the haploid products mature does not appear to be crucial for spore viability.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 55%
Professor 1 9%
Unspecified 1 9%
Student > Bachelor 1 9%
Student > Ph. D. Student 1 9%
Other 0 0%
Unknown 1 9%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 45%
Agricultural and Biological Sciences 4 36%
Unspecified 1 9%
Unknown 1 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 July 2015.
All research outputs
#17,764,580
of 22,815,414 outputs
Outputs from BMC Research Notes
#2,828
of 4,262 outputs
Outputs of similar age
#176,544
of 262,924 outputs
Outputs of similar age from BMC Research Notes
#48
of 80 outputs
Altmetric has tracked 22,815,414 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,262 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,924 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.