↓ Skip to main content

Gene copy number variation in natural populations of Plasmodium falciparum in Eastern Africa

Overview of attention for article published in BMC Genomics, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gene copy number variation in natural populations of Plasmodium falciparum in Eastern Africa
Published in
BMC Genomics, May 2018
DOI 10.1186/s12864-018-4689-7
Pubmed ID
Authors

Joan Simam, Martin Rono, Joyce Ngoi, Mary Nyonda, Sachel Mok, Kevin Marsh, Zbynek Bozdech, Margaret Mackinnon

Abstract

Gene copy number variants (CNVs), which consist of deletions and amplifications of single or sets of contiguous genes, contribute to the great diversity in the Plasmodium falciparum genome. In vitro studies in the laboratory have revealed their important role in parasite fitness phenotypes such as red cell invasion, transmissibility and cytoadherence. Studies of natural parasite populations indicate that CNVs are also common in the field and thus may facilitate adaptation of the parasite to its local environment. In a survey of 183 fresh field isolates from three populations in Eastern Africa with different malaria transmission intensities, we identified 94 CNV loci using microarrays. All CNVs had low population frequencies (minor allele frequency < 5%) but each parasite isolate carried an average of 8 CNVs. Nine CNVs showed high levels of population differentiation (FST > 0.3) and nine exhibited significant clines in population frequency across a gradient in transmission intensity. The clearest example of this was a large deletion on chromosome 9 previously reported only in laboratory-adapted isolates. This deletion was present in 33% of isolates from a population with low and highly seasonal malaria transmission, and in < 9% of isolates from populations with higher transmission. Subsets of CNVs were strongly correlated in their population frequencies, implying co-selection. These results support the hypothesis that CNVs are the target of selection in natural populations of P. falciparum. Their environment-specific patterns observed here imply an important role for them in conferring adaptability to the parasite thus enabling it to persist in its highly diverse ecological environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 19%
Researcher 5 10%
Student > Bachelor 5 10%
Student > Master 4 8%
Student > Doctoral Student 3 6%
Other 8 15%
Unknown 17 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 15%
Agricultural and Biological Sciences 8 15%
Medicine and Dentistry 4 8%
Business, Management and Accounting 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 8 15%
Unknown 20 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2018.
All research outputs
#14,867,044
of 23,070,218 outputs
Outputs from BMC Genomics
#6,140
of 10,702 outputs
Outputs of similar age
#196,657
of 330,209 outputs
Outputs of similar age from BMC Genomics
#141
of 260 outputs
Altmetric has tracked 23,070,218 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,702 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,209 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 260 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.