↓ Skip to main content

Factors affecting larval tick feeding success: host, density and time

Overview of attention for article published in Parasites & Vectors, June 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Factors affecting larval tick feeding success: host, density and time
Published in
Parasites & Vectors, June 2015
DOI 10.1186/s13071-015-0955-6
Pubmed ID
Authors

Cami R. Jones, Jesse L. Brunner, Glen A. Scoles, Jeb P. Owen

Abstract

Ectoparasites rely on blood-feeding to sustain activity, support development and produce offspring. Blood-feeding is also a route for transmission of diverse vector-borne pathogens. The likelihood of successfully feeding is thus an important aspect of ectoparasite population dynamics and pathogen transmission. Factors that affect blood-feeding include ectoparasite density, host defenses, and ages of the host and ectoparasite. How these factors interact to affect feeding success is not well understood. We monitored blood-feeding success of larval Rocky Mountain wood ticks (RMWTs; Dermacentor andersoni) on deer mice (Peromyscus maniculatus) in several experiments to determine how tick density, host defense, and ages of mice and ticks interact to influence feeding success. In the first experiment, tick-naive deer mice were infested with one of several densities of RMWT larvae, while a second cohort of mice were infested with 50 larvae each. Two weeks after ticks dropped off, mice in the first cohort were re-exposed to 50 larvae each and mice in the second cohort were re-exposed to varying densities of larvae. In the second experiment mice of different ages (45-374 days old) were exposed to 50 larvae each. Two weeks later mice were re-exposed to 50 larvae each. We combined data from these and several similar experiments to test the generality of the patterns we observed. Lastly, we tested whether tick feeding success was consistent on individual mice that were challenged on four occasions. Mice acquired resistance such that feeding success declined dramatically from the first to the second infestation. Feeding success also declined with tick density and tick age. Mice, however, became more permissive with age. The sizes of these effects were similar and additive. Surprisingly, over successive infestations the relative resistance among mice changed among hosts within a cohort. We predict that larval blood-feeding success, and thus development to the nymph stage, will change due to variation in tick age and density, as well as the age and history of the host. Incorporating these biotic factors into modeling of tick population dynamics may improve predictions of tick-borne pathogen transmission.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
South Africa 1 2%
Unknown 61 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 22%
Student > Ph. D. Student 10 16%
Student > Master 10 16%
Student > Bachelor 5 8%
Student > Doctoral Student 4 6%
Other 10 16%
Unknown 11 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 33%
Veterinary Science and Veterinary Medicine 7 11%
Environmental Science 7 11%
Biochemistry, Genetics and Molecular Biology 5 8%
Immunology and Microbiology 3 5%
Other 9 14%
Unknown 12 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2015.
All research outputs
#18,418,694
of 22,816,807 outputs
Outputs from Parasites & Vectors
#4,224
of 5,461 outputs
Outputs of similar age
#189,616
of 264,035 outputs
Outputs of similar age from Parasites & Vectors
#89
of 120 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,461 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,035 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.