↓ Skip to main content

Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2

Overview of attention for article published in BMC Veterinary Research, July 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

blogs
1 blog
twitter
5 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2
Published in
BMC Veterinary Research, July 2015
DOI 10.1186/s12917-015-0473-y
Pubmed ID
Authors

Breno C.B. Beirão, Teresa Raposo, Lisa Y. Pang, David J. Argyle

Abstract

Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 11 19%
Student > Master 10 18%
Researcher 9 16%
Student > Doctoral Student 5 9%
Student > Ph. D. Student 5 9%
Other 12 21%
Unknown 5 9%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 25 44%
Medicine and Dentistry 13 23%
Agricultural and Biological Sciences 9 16%
Immunology and Microbiology 2 4%
Unspecified 1 2%
Other 0 0%
Unknown 7 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2021.
All research outputs
#3,041,445
of 22,817,213 outputs
Outputs from BMC Veterinary Research
#208
of 3,050 outputs
Outputs of similar age
#40,677
of 262,607 outputs
Outputs of similar age from BMC Veterinary Research
#8
of 74 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,050 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,607 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.