↓ Skip to main content

Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten

Overview of attention for article published in Epigenetics & Chromatin, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#22 of 568)
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

twitter
35 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten
Published in
Epigenetics & Chromatin, May 2018
DOI 10.1186/s13072-018-0194-0
Pubmed ID
Authors

Shalima S. Nair, Phuc-Loi Luu, Wenjia Qu, Madhavi Maddugoda, Lily Huschtscha, Roger Reddel, Georgia Chenevix-Trench, Martina Toso, James G. Kench, Lisa G. Horvath, Vanessa M. Hayes, Phillip D. Stricker, Timothy P. Hughes, Deborah L. White, John E. J. Rasko, Justin J.-L. Wong, Susan J. Clark

Abstract

Comprehensive genome-wide DNA methylation profiling is critical to gain insights into epigenetic reprogramming during development and disease processes. Among the different genome-wide DNA methylation technologies, whole genome bisulphite sequencing (WGBS) is considered the gold standard for assaying genome-wide DNA methylation at single base resolution. However, the high sequencing cost to achieve the optimal depth of coverage limits its application in both basic and clinical research. To achieve 15× coverage of the human methylome, using WGBS, requires approximately three lanes of 100-bp-paired-end Illumina HiSeq 2500 sequencing. It is important, therefore, for advances in sequencing technologies to be developed to enable cost-effective high-coverage sequencing. In this study, we provide an optimised WGBS methodology, from library preparation to sequencing and data processing, to enable 16-20× genome-wide coverage per single lane of HiSeq X Ten, HCS 3.3.76. To process and analyse the data, we developed a WGBS pipeline (METH10X) that is fast and can call SNPs. We performed WGBS on both high-quality intact DNA and degraded DNA from formalin-fixed paraffin-embedded tissue. First, we compared different library preparation methods on the HiSeq 2500 platform to identify the best method for sequencing on the HiSeq X Ten. Second, we optimised the PhiX and genome spike-ins to achieve higher quality and coverage of WGBS data on the HiSeq X Ten. Third, we performed integrated whole genome sequencing (WGS) and WGBS of the same DNA sample in a single lane of HiSeq X Ten to improve data output. Finally, we compared methylation data from the HiSeq 2500 and HiSeq X Ten and found high concordance (Pearson r > 0.9×). Together we provide a systematic, efficient and complete approach to perform and analyse WGBS on the HiSeq X Ten. Our protocol allows for large-scale WGBS studies at reasonable processing time and cost on the HiSeq X Ten platform.

X Demographics

X Demographics

The data shown below were collected from the profiles of 35 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 79 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 18%
Student > Master 9 11%
Student > Ph. D. Student 9 11%
Student > Bachelor 7 9%
Student > Postgraduate 5 6%
Other 11 14%
Unknown 24 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 23%
Agricultural and Biological Sciences 17 22%
Medicine and Dentistry 4 5%
Veterinary Science and Veterinary Medicine 2 3%
Unspecified 2 3%
Other 9 11%
Unknown 27 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 23. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2018.
All research outputs
#1,412,115
of 23,079,238 outputs
Outputs from Epigenetics & Chromatin
#22
of 568 outputs
Outputs of similar age
#32,850
of 330,889 outputs
Outputs of similar age from Epigenetics & Chromatin
#2
of 21 outputs
Altmetric has tracked 23,079,238 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 568 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,889 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.