↓ Skip to main content

Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations

Overview of attention for article published in Molecular Neurodegeneration, July 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
2 news outlets
twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations
Published in
Molecular Neurodegeneration, July 2015
DOI 10.1186/s13024-015-0024-9
Pubmed ID
Authors

Karolien Bettens, Steven Vermeulen, Caroline Van Cauwenberghe, Bavo Heeman, Bob Asselbergh, Caroline Robberecht, Sebastiaan Engelborghs, Mathieu Vandenbulcke, Rik Vandenberghe, Peter Paul De Deyn, Marc Cruts, Christine Van Broeckhoven, Kristel Sleegers

Abstract

The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the β-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear. Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs. Three patient-specific CLU mutations in the β-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines. Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the α- and β-chain of CLU.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 70 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 31%
Researcher 12 17%
Student > Bachelor 10 14%
Other 5 7%
Student > Postgraduate 4 6%
Other 8 11%
Unknown 10 14%
Readers by discipline Count As %
Neuroscience 16 23%
Biochemistry, Genetics and Molecular Biology 16 23%
Agricultural and Biological Sciences 14 20%
Medicine and Dentistry 8 11%
Chemical Engineering 1 1%
Other 5 7%
Unknown 11 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2021.
All research outputs
#1,845,243
of 23,323,574 outputs
Outputs from Molecular Neurodegeneration
#174
of 864 outputs
Outputs of similar age
#24,645
of 263,545 outputs
Outputs of similar age from Molecular Neurodegeneration
#3
of 20 outputs
Altmetric has tracked 23,323,574 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 864 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,545 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.