↓ Skip to main content

Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development

Overview of attention for article published in BMC Developmental Biology, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development
Published in
BMC Developmental Biology, July 2015
DOI 10.1186/s12861-015-0078-5
Pubmed ID
Authors

Anna M. Raines, Bliss Magella, Mike Adam, S. Steven Potter

Abstract

The 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated. In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11 (-/-) /Hoxd9,10,11 (-/-) mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11 (-/-)/Hoxd11 (-/-) mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation. The recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11 (-/-) /Hoxd9,10,11 (-/-) mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
South Africa 1 1%
Unknown 77 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 15%
Researcher 12 15%
Student > Bachelor 10 13%
Student > Master 8 10%
Student > Doctoral Student 6 8%
Other 10 13%
Unknown 20 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 32%
Agricultural and Biological Sciences 18 23%
Medicine and Dentistry 8 10%
Unspecified 1 1%
Social Sciences 1 1%
Other 3 4%
Unknown 22 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2015.
All research outputs
#15,340,005
of 22,817,213 outputs
Outputs from BMC Developmental Biology
#259
of 369 outputs
Outputs of similar age
#154,369
of 263,900 outputs
Outputs of similar age from BMC Developmental Biology
#6
of 7 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 369 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,900 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one.