↓ Skip to main content

Impact of genetic similarity on imputation accuracy

Overview of attention for article published in BMC Genomic Data, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of genetic similarity on imputation accuracy
Published in
BMC Genomic Data, July 2015
DOI 10.1186/s12863-015-0248-2
Pubmed ID
Authors

Nab Raj Roshyara, Markus Scholz

Abstract

Genotype imputation is a common technique in genetic research. Genetic similarity between target population and reference dataset is crucial for high-quality results. Although several reference panels are available, it is often not clear which is the most optimal for a particular target dataset to be imputed. Maximizing genetic similarity between study sample and intended reference panels may be the straight forward method for selecting the genetically best-matched reference. However, the impact of genetic similarity on imputation accuracy has not yet been studied in detail. We performed a simulation study in 20 ethnic groups obtained from POPRES. High-quality SNPs were masked and re-imputed with MaCH, MaCH-minimac and IMPUTE2 using four different HapMap reference panels (CEU, CHB-JPT, MEX and YRI). Imputation accuracy was assessed by different statistics. Genetic similarity between ethnic groups and reference populations were measured by F -statistics (F ST ) originally proposed by Wright and G -statistics (G ST ) introduced by Nei and others. To assess the predictive power of these measures regarding imputation accuracy, we analysed relations between them and corresponding imputation accuracy scores. We found that population genetic distances between homogeneous reference and target populations were strongly linearly correlated with resulting imputation accuracies irrespective of considered distance measure, imputation accuracy measure, missingness and imputation software used. Possible exception was African population. Usage of G ST or F ST -related measures for predicting the optimal reference panel for imputation frameworks relying on a specific reference is highly recommended. A cut-off of G ST  < 0.01 is recommended to achieve good imputation results for high-frequency variants and small data sets. The linear relationship is less pronounced for low-frequency variants for which we also observed a dependence of imputation accuracy on the number of polymorphic sites in the reference. We also show that the software specific measures MaCH-Rsq and IMPUTE-info must be interpreted with caution if the genetic distance of target and reference population is high.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Finland 1 2%
New Zealand 1 2%
Denmark 1 2%
Argentina 1 2%
Unknown 54 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 29%
Researcher 12 21%
Student > Bachelor 8 14%
Student > Master 6 10%
Professor 3 5%
Other 6 10%
Unknown 6 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 50%
Biochemistry, Genetics and Molecular Biology 10 17%
Computer Science 3 5%
Medicine and Dentistry 3 5%
Engineering 2 3%
Other 2 3%
Unknown 9 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2017.
All research outputs
#15,740,207
of 25,374,647 outputs
Outputs from BMC Genomic Data
#515
of 1,204 outputs
Outputs of similar age
#140,306
of 275,278 outputs
Outputs of similar age from BMC Genomic Data
#14
of 44 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,278 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.