↓ Skip to main content

Strategies for assembling columns and layers in the Drosophila visual system

Overview of attention for article published in Neural Development, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Strategies for assembling columns and layers in the Drosophila visual system
Published in
Neural Development, June 2018
DOI 10.1186/s13064-018-0106-9
Pubmed ID
Authors

S. Sean Millard, Matthew Y. Pecot

Abstract

A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 16%
Student > Master 8 15%
Student > Bachelor 7 13%
Student > Ph. D. Student 7 13%
Student > Doctoral Student 4 7%
Other 6 11%
Unknown 14 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 22%
Neuroscience 12 22%
Biochemistry, Genetics and Molecular Biology 10 18%
Medicine and Dentistry 2 4%
Energy 1 2%
Other 3 5%
Unknown 15 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2018.
All research outputs
#14,718,998
of 23,577,654 outputs
Outputs from Neural Development
#109
of 227 outputs
Outputs of similar age
#187,983
of 330,339 outputs
Outputs of similar age from Neural Development
#6
of 10 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 227 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,339 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.