↓ Skip to main content

Receptor interacting protein 3-induced RGC-5 cell necroptosis following oxygen glucose deprivation

Overview of attention for article published in BMC Neuroscience, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Receptor interacting protein 3-induced RGC-5 cell necroptosis following oxygen glucose deprivation
Published in
BMC Neuroscience, August 2015
DOI 10.1186/s12868-015-0187-x
Pubmed ID
Authors

Wei Ding, Lei Shang, Ju-Fang Huang, Na Li, Dan Chen, Li-Xiang Xue, Kun Xiong

Abstract

Necroptosis is a type of regulated form of cell death that has been implicated in the pathogenesis of various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family of proteins, has been reported as an important necroptotic pathway mediator in regulating a variety of human diseases, such as myocardial ischemia, inflammatory bowel disease, and ischemic brain injury. Our previous study showed that RIP3 was expressed in rat retinal ganglion cells (RGCs), where it was significantly upregulated during the early stage of acute high intraocular pressure. Furthermore, RIP3 expression was co-localized with propidium iodide (PI)-positive staining (necrotic cells). These results suggested that RIP3 up-regulation might be involved in the necrosis of injured RGCs. In this study, we aimed to reveal the possible involvement of RIP3 in oxygen glucose deprivation (OGD)-induced retinal ganglion cell-5 (RGC-5) necroptosis. RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8 h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. RIP3 expression was detected by western blot and flow cytometry was used to detect the effect of RIP3 on RGC-5 necroptosis following OGD in rip3 knockdown cells. Malondialdehyde (MDA) lipid peroxidation assay was performed to determine the degree of oxidative stress. PI staining showed that necrosis was present in the early stage of OGD-induced RGC-5 cell death. The presence of RGC-5 necroptosis after OGD was detected by flow cytometry using necrostatin-1, a necroptosis inhibitor. Western blot demonstrated that RIP3 up-regulation may be involved in RGC-5 necroptosis. Flow cytometry revealed that the number of OGD-induced necrotic RGC-5 cells was reduced after rip3 knockdown. Furthermore, MDA levels in the normal RGC-5 cells were much higher than in the rip3-knockdown cells after OGD. Our findings suggest that RGC-5 cell necroptosis following OGD is mediated by a RIP3-induced increase in oxidative stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Bachelor 4 15%
Student > Doctoral Student 4 15%
Student > Master 4 15%
Professor > Associate Professor 3 11%
Other 5 19%
Unknown 2 7%
Readers by discipline Count As %
Medicine and Dentistry 6 22%
Neuroscience 5 19%
Biochemistry, Genetics and Molecular Biology 3 11%
Agricultural and Biological Sciences 3 11%
Psychology 2 7%
Other 5 19%
Unknown 3 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2016.
All research outputs
#14,232,642
of 22,818,766 outputs
Outputs from BMC Neuroscience
#607
of 1,244 outputs
Outputs of similar age
#136,074
of 264,230 outputs
Outputs of similar age from BMC Neuroscience
#14
of 22 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,244 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,230 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.