↓ Skip to main content

Prokaryotic expression and mechanism of action of α-helical antimicrobial peptide A20L using fusion tags

Overview of attention for article published in BMC Biotechnology, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#30 of 421)
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

news
1 news outlet
twitter
2 tweeters

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prokaryotic expression and mechanism of action of α-helical antimicrobial peptide A20L using fusion tags
Published in
BMC Biotechnology, August 2015
DOI 10.1186/s12896-015-0189-x
Pubmed ID
Authors

Tonghui Yi, Shiyu Sun, Yibing Huang, Yuxin Chen

Abstract

Antimicrobial peptides have become important candidates as new antibiotics against resistant bacterial strains. However, the major industrial manufacture of antimicrobial peptides is chemical synthesis with high costs and in relatively small scale. The Ub-tag and SUMO-tag are useful for increasing the yield of enzymes and other proteins in expression system. In this study, antimicrobial peptide A20L (KWKSFLKTFKSAKKTVLHTLLKAISS), a derivative of V13K in the previous study is used as a template to be expressed in different Ub-tag and human SUMO tag systems to compare the prokaryotic expression approaches of antimicrobial peptide. The antibacterial mechanism of action and membrane specificity of A20L was further studied. We fused the Ub and SUMO1/2/3/4 with A20L to construct expression plasmids. Ub-A20L and SUMO1/2/34 gene sequences were inserted into the pHUE plasmids and pET-28b+ plasmids, respectively, to construct pHUE-A20L plasmids and pET-28b+-SUMO1/2/3/4-A20L plasmids. These plasmids were transformed into E. coli Rosetta (DE3) and induced with IPTG to express Ub-A20L and SUMO1/2/3/4 fusion proteins. The recombinant proteins were found in the soluble fraction after being over expressed in E. coli Rosetta (DE3). Antibacterial and hemolytic activities and membrane permeabilization ability of A20L were determined. Peptide structure was also studied by circular dichroism experiments. A20L (KWKSFLKTFKSAKKTVLHTLLKAISS) was successfully expressed by fusion with an ubiquitin tag (Ub-tag) and human SUMO tags (SUMO1/2/3/4-tags). A20L exhibited antimicrobial activity against various Gram-negative and Gram-positive bacteria. Based on the hemolytic activity against human red blood cells, A20L showed good specificity against bacteria. The circular dichroism experiments illustrated that A20L was transferred into an α-helical structure in the presence of hydrophobic environment. The antibacterial mechanism of action and membrane specificity of A20L was further studied using membrane permeabilization experiments and tryptophan fluorescence and quenching experiments in liposomes. The Ub-tag and human SUMO-tags represent good alternatives to chemical synthesis for the industrial production of antimicrobial peptides with low costs and high yields. The antibacterial mechanism of action of A20L was proved as membrane disruption. A20L showed stronger specificity on liposomes mimicking bacterial membrane than those mimicking eukaryotic cell membrane, which is consistent with the biological activity studies.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 24%
Researcher 5 15%
Student > Bachelor 4 12%
Student > Doctoral Student 2 6%
Other 2 6%
Other 6 18%
Unknown 6 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 24%
Biochemistry, Genetics and Molecular Biology 6 18%
Environmental Science 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Medicine and Dentistry 2 6%
Other 6 18%
Unknown 7 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2015.
All research outputs
#492,138
of 5,446,629 outputs
Outputs from BMC Biotechnology
#30
of 421 outputs
Outputs of similar age
#25,182
of 189,782 outputs
Outputs of similar age from BMC Biotechnology
#9
of 28 outputs
Altmetric has tracked 5,446,629 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 421 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 189,782 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.