↓ Skip to main content

Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects

Overview of attention for article published in Respiratory Research, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
8 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects
Published in
Respiratory Research, August 2015
DOI 10.1186/s12931-015-0254-y
Pubmed ID
Authors

Dorota Stefanowicz, Ja Young Lee, Kevin Lee, Furquan Shaheen, Hyun-Kyoung Koo, Steven Booth, Darryl A. Knight, Tillie-Louise Hackett

Abstract

Epigenetic adjustments of the chromatin architecture through histone modifications are reactive to the environment and can establish chromatin states which are permissive or repressive to gene expression. Epigenetic regulation of gene expression is cell specific and therefore, it is important to understand its contribution to individual cellular responses in tissues like the airway epithelium which forms the mucosal barrier to the inhaled environment within the lung. The airway epithelium of asthmatics is abnormal with dysregulation of genes such as epidermal growth factor receptor (EGFR), the ΔN isoform of the transcription factor p63 (ΔNp63), and signal transducer and activator of transcription 6 (STAT6), integral to differentiation, proliferation, and inflammation. It is important to establish in diseases like asthma how histone modifications affect tissue responses such as proliferation and differentiation. To characterize the global histone acetylation and methylation status in the epithelium of asthmatic compared to healthy subjects and to identify the impact of these variations on genes involved in epithelial functions. Whole lungs were obtained from healthy and asthmatic subjects (n = 6) from which airway epithelial cells (AECs) were isolated and airway sections were taken for analysis of histone lysine acetylation and methylation by immunohistochemistry. AECs were subjected to chromatin immunoprecipitation (ChIP) using anti-H3K18ac and anti-H3K4me2 antibodies followed by RT-PCR targeting ΔNp63, EGFR, and STAT6. AECs were also treated with TSA and changes in ΔNp63, EGFR, and STAT6 expression were determined. We identified an increase in the acetylation of lysine 18 on histone 3 (H3K18ac) and trimethylation of lysine 9 on histone 3 (H3K9me3) in the airway epithelium of asthmatic compared to healthy subjects. We found increased association of H3K18ac around the transcription start site of ΔNp63, EGFR, and STAT6 in AECs of asthmatics. However, we were unable to modify the expression of these genes with the use of the HDAC inhibitor TSA in healthy subjects. The airway epithelium from asthmatic subjects displays increased acetylation of H3K18 and association of this mark around the transcription start site of ΔNp63, EGFR, and STAT6. These findings suggest a complex interaction between histone modifications and gene regulation in asthma.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 37 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 24%
Student > Master 6 16%
Student > Ph. D. Student 6 16%
Student > Bachelor 5 13%
Student > Doctoral Student 3 8%
Other 5 13%
Unknown 4 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 32%
Medicine and Dentistry 8 21%
Agricultural and Biological Sciences 6 16%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Immunology and Microbiology 2 5%
Other 3 8%
Unknown 5 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 January 2017.
All research outputs
#2,627,097
of 25,374,917 outputs
Outputs from Respiratory Research
#294
of 3,062 outputs
Outputs of similar age
#32,767
of 275,664 outputs
Outputs of similar age from Respiratory Research
#3
of 42 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,664 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.