↓ Skip to main content

Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis

Overview of attention for article published in BMC Microbiology, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

twitter
1 X user
patent
3 patents

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
Published in
BMC Microbiology, August 2015
DOI 10.1186/s12866-015-0479-4
Pubmed ID
Authors

Shady Asmar, Michel Drancourt

Abstract

Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum specimens were artificially infected with 10(5) colony-forming units (cfu)/mL Mycobacterium tuberculosis and Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans as contaminants. In the second step, we tested chlorhexidine-based decontamination on 191 clinical specimens, (Chlorhexidine, 0.1, 0.5 and 0.7 %). In a last step, growth of contaminants and mycobacteria was measured in 75 consecutive sputum specimens using the routine NALC-NaOH decontamination protocol or with 0.7 % chlorhexidine decontamination and an inoculation on Coletsos medium. In the artificially model, contaminants grew in 100 % of the artificially infected sputum specimens decontaminated using 100 mg/mL squalamine, in 62.5 % of specimens decontaminated using N-Acetyl-L-Cysteine-Sodium Hydroxide (NALC-NaOH), and in 0 % of specimens decontaminated using 0.1 %, 0.35 %, or 1 % chlorhexidine (P < 0.05). These specimens yielded <10(2) cfu M. tuberculosis using NALC-NaOH and > 1.4.10(2) cfu M. tuberculosis when any concentration of chlorhexidine was used (P < 0.05). In the second step we found that 0.7 %-chlorhexidine yielded 0 % contamination rate, 3.2 % for 0.5 %-chlorhexidine and 28.3 % for 0.1 %-chlorhexidine. As for the 75 specimens treated in parallel by both methods we found that when using the standard NALC-NaOH decontamination method, 8/75 (10.7 %) specimens yielded M. tuberculosis colonies with a time to detection of 17.5 ± 3 days and an 8 % contamination rate. Additionally, 14 specimens yielded mycobacteria colonies (12 M. tuberculosis, and 2 Mycobacterium bolletii) (18.7 %) (P = 0.25), which has yielded a 100 % sensitivity for the chlorhexidine protocol. Time to detection was of 15.86 ± 4.7 days (P = 0.39) and a 0 % contamination rate (P < 0.05) using the 0.7 %-chlorhexidine protocol. In our work we showed for the first time that chlorhexidine based decontamination is superior to the standard NALC-NaOH method in the isolation of M. tuberculosis from sputum specimens. We currently use 0.7 %-chlorhexidine for the routine decontamination of sputum specimens for the isolation of M. tuberculosis and non-tuberculosis mycobacteria on egg-lecithin containing media.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Nigeria 1 1%
Unknown 77 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 14%
Student > Master 10 13%
Student > Bachelor 8 10%
Student > Ph. D. Student 6 8%
Student > Doctoral Student 5 6%
Other 15 19%
Unknown 23 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 18%
Immunology and Microbiology 14 18%
Medicine and Dentistry 12 15%
Biochemistry, Genetics and Molecular Biology 6 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 7 9%
Unknown 23 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 March 2020.
All research outputs
#4,607,048
of 22,821,814 outputs
Outputs from BMC Microbiology
#490
of 3,190 outputs
Outputs of similar age
#58,180
of 264,147 outputs
Outputs of similar age from BMC Microbiology
#3
of 48 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,190 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,147 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.