↓ Skip to main content

Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC

Overview of attention for article published in Microbiome, June 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

news
4 news outlets
blogs
2 blogs
twitter
7 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
113 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC
Published in
Microbiome, June 2018
DOI 10.1186/s40168-018-0498-0
Pubmed ID
Authors

Lee Call, Barbara Stoll, Berthe Oosterloo, Nadim Ajami, Fariha Sheikh, Anja Wittke, Rosaline Waworuntu, Brian Berg, Joseph Petrosino, Oluyinka Olutoye, Douglas Burrin

Abstract

Major risk factors for necrotizing enterocolitis (NEC) include premature birth and formula feeding in the context of microbial colonization of the gastrointestinal tract. We previously showed that feeding formula composed of lactose vs. corn syrup solids protects against NEC in preterm pigs; however, the microbial and metabolic effects of these different carbohydrates used in infant formula has not been explored. Our objective was to characterize the effects of lactose- and corn syrup solid-based formulas on the metabolic and microbial profiles of preterm piglets and to determine whether unique metabolomic or microbiome signatures correlate with severity or incidence of NEC. Preterm piglets (103 days gestation) were given total parenteral nutrition (2 days) followed by gradual (5 days) advancement of enteral feeding of formulas matched in nutrient content but containing either lactose (LAC), corn syrup solids (CSS), or 1:1 mix (MIX). Gut contents and mucosal samples were collected and analyzed for microbial profiles by sequencing the V4 region of the 16S rRNA gene. Metabolomic profiles of cecal contents and plasma were analyzed by LC/GC mass spectrometry. NEC incidence was 14, 50, and 44% in the LAC, MIX, and CSS groups, respectively. The dominant classes of bacteria were Bacilli, Clostridia, and Gammaproteobacteria. The number of observed OTUs was lowest in colon contents of CSS-fed pigs. CSS-based formula was associated with higher Bacilli and lower Clostridium from clusters XIVa and XI in the colon. NEC was associated with decreased Gammaproteobacteria in the stomach and increased Clostridium sensu stricto in the ileum. Plasma from NEC piglets was enriched with metabolites of purine metabolism, aromatic amino acid metabolism, and bile acids. Markers of glycolysis, e.g., lactate, were increased in the cecal contents of CSS-fed pigs and in plasma of pigs which developed NEC. Feeding formula containing lactose is not completely protective against NEC, yet selects for greater microbial richness associated with changes in Bacilli and Clostridium and lower NEC incidence. We conclude that feeding preterm piglets a corn syrup solid vs. lactose-based formula increases the incidence of NEC and produces distinct metabolomic signatures despite modest changes in microbiome profiles.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 113 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 113 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 14%
Student > Master 14 12%
Student > Bachelor 11 10%
Student > Ph. D. Student 8 7%
Other 8 7%
Other 17 15%
Unknown 39 35%
Readers by discipline Count As %
Medicine and Dentistry 20 18%
Agricultural and Biological Sciences 15 13%
Nursing and Health Professions 8 7%
Biochemistry, Genetics and Molecular Biology 6 5%
Immunology and Microbiology 4 4%
Other 13 12%
Unknown 47 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 47. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2019.
All research outputs
#764,870
of 23,090,520 outputs
Outputs from Microbiome
#214
of 1,464 outputs
Outputs of similar age
#18,432
of 328,030 outputs
Outputs of similar age from Microbiome
#8
of 52 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,464 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 40.4. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,030 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.