↓ Skip to main content

Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex

Overview of attention for article published in Molecular Autism, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

news
2 news outlets
twitter
15 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
99 Dimensions

Readers on

mendeley
145 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex
Published in
Molecular Autism, August 2015
DOI 10.1186/s13229-015-0040-1
Pubmed ID
Authors

Michal Mor, Stefano Nardone, Dev Sharan Sams, Evan Elliott

Abstract

MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in the human autism brain. Our data suggests that dysregulation of microRNAs may play a biological role in the brain of individuals of autism. In addition, we suggest an interaction between epigenetic mechanisms and microRNA dysregulation in the brain. Overall, this data adds an important link in our understanding of the molecular events that are dysregulated in the brain of individuals diagnosed with autism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 145 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 145 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 27 19%
Student > Ph. D. Student 26 18%
Researcher 19 13%
Student > Bachelor 17 12%
Student > Doctoral Student 8 6%
Other 17 12%
Unknown 31 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 19%
Neuroscience 24 17%
Biochemistry, Genetics and Molecular Biology 20 14%
Medicine and Dentistry 13 9%
Psychology 9 6%
Other 19 13%
Unknown 33 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2023.
All research outputs
#1,416,314
of 25,654,806 outputs
Outputs from Molecular Autism
#137
of 722 outputs
Outputs of similar age
#18,044
of 277,174 outputs
Outputs of similar age from Molecular Autism
#2
of 13 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 722 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,174 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.