↓ Skip to main content

Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, August 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
5 X users
googleplus
1 Google+ user

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology
Published in
Biotechnology for Biofuels and Bioproducts, August 2015
DOI 10.1186/s13068-015-0295-y
Pubmed ID
Authors

Jiaoqi Gao, Wenjie Yuan, Yimin Li, Ruijuan Xiang, Shengbo Hou, Shijun Zhong, Fengwu Bai

Abstract

Ethanol production from non-crop materials, such as Jerusalem artichokes, would make a great contribution to the energy industry. The non-conventional yeast, Kluyveromyces marxianus, is able to carry out ethanol fermentation of sugar molecules obtained from inulin-containing materials by consolidated bioprocessing. Lower inulin concentrations and micro-aeration can lead to a relatively fast and ideal fermentation process; however, it is unclear what causes the inhibition of higher concentrations of inulin and the promotion effect of aeration. Next-generation sequencing technology was used to study the global transcriptional response of K. marxianus Y179 under three fermentation conditions, including 120 g/L inulin without aeration (120-N), 230 g/L inulin without aeration (230-N), 230 g/L inulin with aeration by ORP controlling at -130 mV (230-130mV). A total of 35.55 million clean reads were generated from three samples, of which 4,820 predicted that open reading frames were annotated. For differential expression analysis, 950 and 1,452 differentially expressed genes were discovered under the conditions of 230-130mV and 120-N, respectively, and the sample 230-N was used as the control. These genes are mainly associated with the pathways of central carbon metabolism and ethanol formation. Increased expression of inulinase and the low activity of the autophagy-related gene, ATG8, ensured fast and ideal fermentation processes. Despite being reported as the "crabtree-negative" species, K. marxianus Y179 could achieve favorable ethanol fermentation profiles under micro-aeration and high inulin concentrations. K. marxianus Y179 cells responded to inulin concentrations and micro-aeration that is involved in the whole ethanol metabolism network. These results will serve as an important foundation for further exploration of the regulatory mechanisms involved in ethanol fermentation from inulin by consolidated bioprocessing and also provide a valuable reference for future studies on optimization and reconstruction of the metabolism network in K. marxianus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 96 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 21%
Researcher 18 19%
Student > Master 18 19%
Student > Doctoral Student 6 6%
Student > Bachelor 6 6%
Other 13 14%
Unknown 15 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 28%
Biochemistry, Genetics and Molecular Biology 22 23%
Chemical Engineering 7 7%
Engineering 7 7%
Chemistry 3 3%
Other 7 7%
Unknown 23 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2017.
All research outputs
#7,204,326
of 25,371,288 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#471
of 1,578 outputs
Outputs of similar age
#77,704
of 276,627 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#9
of 45 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,627 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.