↓ Skip to main content

Identification of genetic variants associated with dengue or West Nile virus disease: a systematic review and meta-analysis

Overview of attention for article published in BMC Infectious Diseases, June 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of genetic variants associated with dengue or West Nile virus disease: a systematic review and meta-analysis
Published in
BMC Infectious Diseases, June 2018
DOI 10.1186/s12879-018-3186-6
Pubmed ID
Authors

Megan E. Cahill, Samantha Conley, Andrew T. DeWan, Ruth R. Montgomery

Abstract

Dengue and West Nile viruses are highly cross-reactive and have numerous parallels in geography, potential vector host (Aedes family of mosquitoes), and initial symptoms of infection. While the vast majority (> 80%) of both dengue and West Nile virus infections result in asymptomatic infections, a minority of individuals experience symptomatic infection and an even smaller proportion develop severe disease. The mechanisms by which these infections lead to severe disease in a subset of infected individuals is incompletely understood, but individual host differences including genetic factors and immune responses have been proposed. We sought to identify genetic risk factors that are associated with more severe disease outcomes for both viruses in order to shed light on possible shared mechanisms of resistance and potential therapeutic interventions. We applied a search strategy using four major databases (Medline, PubMed, Embase, and Global Health) to find all known genetic associations identified to date with dengue or West Nile virus disease. Here we present a review of our findings and a meta-analysis of genetic variants identified. We found genetic variations that are significantly associated with infections of these viruses. In particular we found variation within the OAS1 (meta-OR = 0.83, 95% CI: 0.69-1.00) and CCR5 (meta-OR = 1.29, 95% CI: 1.08-1.53) genes is significantly associated with West Nile virus disease, while variation within MICB (meta-OR = 2.35, 95% CI: 1.68-3.29), PLCE1 (meta-OR = 0.55, 95% CI: 0.42-0.71), MBL2 (meta-OR = 1.54, 95% CI: 1.02-2.31), and IFN-γ (meta-OR = 2.48, 95% CI: 1.30-4.71), is associated with dengue disease. Despite substantial heterogeneity in populations studied, genes examined, and methodology, significant associations with genetic variants were found across studies within both diseases. These gene associations suggest a key role for immune mechanisms in susceptibility to severe disease. Further research is needed to elucidate the role of these genes in disease pathogenesis and may reveal additional genetic factors associated with disease severity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 109 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 21%
Researcher 15 14%
Student > Ph. D. Student 10 9%
Student > Bachelor 8 7%
Student > Doctoral Student 7 6%
Other 16 15%
Unknown 30 28%
Readers by discipline Count As %
Medicine and Dentistry 19 17%
Biochemistry, Genetics and Molecular Biology 17 16%
Immunology and Microbiology 10 9%
Agricultural and Biological Sciences 9 8%
Nursing and Health Professions 5 5%
Other 18 17%
Unknown 31 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2018.
All research outputs
#6,623,520
of 23,577,654 outputs
Outputs from BMC Infectious Diseases
#2,059
of 7,854 outputs
Outputs of similar age
#113,771
of 329,757 outputs
Outputs of similar age from BMC Infectious Diseases
#38
of 148 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 7,854 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,757 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 148 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.