↓ Skip to main content

Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain

Overview of attention for article published in BMC Research Notes, August 2015
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain
Published in
BMC Research Notes, August 2015
DOI 10.1186/s13104-015-1314-6
Pubmed ID
Authors

Tara N Stuecker, Shanti Bramhacharya, Kelsey M Hodge-Hanson, Garret Suen, Jorge C Escalante-Semerena

Abstract

All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and β-alanine. The synthesis of β-alanine is catalyzed by L-aspartate-α-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo. Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-α-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-α-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-α-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-α-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-α-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions. Experimental results indicate that S. enterica and C. glutamicum L-aspartate-α-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-α-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-α-decarboxylases.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 20%
Student > Bachelor 2 20%
Professor 1 10%
Student > Doctoral Student 1 10%
Student > Master 1 10%
Other 1 10%
Unknown 2 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 30%
Agricultural and Biological Sciences 3 30%
Computer Science 1 10%
Immunology and Microbiology 1 10%
Unknown 2 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2015.
All research outputs
#3,862,173
of 5,487,749 outputs
Outputs from BMC Research Notes
#1,187
of 1,741 outputs
Outputs of similar age
#123,793
of 178,889 outputs
Outputs of similar age from BMC Research Notes
#73
of 118 outputs
Altmetric has tracked 5,487,749 research outputs across all sources so far. This one is in the 16th percentile – i.e., 16% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,741 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 178,889 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.