↓ Skip to main content

Serine/arginine-rich splicing factor 3 (SRSF3) regulates homologous recombination-mediated DNA repair

Overview of attention for article published in Molecular Cancer, August 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
46 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Serine/arginine-rich splicing factor 3 (SRSF3) regulates homologous recombination-mediated DNA repair
Published in
Molecular Cancer, August 2015
DOI 10.1186/s12943-015-0422-1
Pubmed ID
Authors

Xiaolong He, Pei Zhang

Abstract

Our previous work found that serine/arginine-rich splicing factor 3 (SRSF3) was overexpressed in human ovarian cancer and the overexpression of SRSF3 was required for ovarian cancer cell growth and survival. The mechanism underlying the role of SRSF3 in ovarian cancer remains to be addressed. We conducted microarray analysis to profile the gene expression and splicing in SRSF3-knockdown cells and employed quantitative PCR and western blotting to validate the profiling results. We used chromatin immunoprecipitation to study transcription and the direct repeat green fluorescent protein reporter assay to study homologous recombination-mediated DNA repair (HRR). We identified 687 genes with altered expression and 807 genes with altered splicing in SRSF3-knockdown cells. Among expression-altered genes, those involved in HRR, including BRCA1, BRIP1 and RAD51, were enriched and were all downregulated. We demonstrated that the downregulation of BRCA1, BRIP1 and RAD51 expression was caused by decreased transcription and not due to increased nonsense-mediated mRNA decay. Further, we found that SRSF3 knockdown impaired HRR activity in the cell and increased the level of γ-H2AX, a biomarker for double-strand DNA breaks. Finally, we observed that SRSF3 knockdown changed splicing pattern of KMT2C, a H3K4-specific histone methyltransferase, and reduced the levels of mono- and trimethylated H3K4. These results suggest that SRSF3 is a new regulator of HRR process, which possibly regulates the expression of HRR-related genes indirectly through an epigenetic pathway. This new function of SRSF3 not only explains why overexpression of SRSF3 is required for ovarian cancer cell growth and survival but also offers a new insight into the mechanism of the neoplastic transformation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 22%
Student > Ph. D. Student 10 22%
Professor 5 11%
Student > Master 5 11%
Student > Bachelor 4 9%
Other 3 7%
Unknown 9 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 41%
Agricultural and Biological Sciences 12 26%
Medicine and Dentistry 3 7%
Immunology and Microbiology 2 4%
Psychology 1 2%
Other 0 0%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2015.
All research outputs
#17,770,433
of 22,824,164 outputs
Outputs from Molecular Cancer
#1,203
of 1,721 outputs
Outputs of similar age
#179,460
of 266,176 outputs
Outputs of similar age from Molecular Cancer
#37
of 46 outputs
Altmetric has tracked 22,824,164 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,721 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,176 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.