↓ Skip to main content

Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment

Overview of attention for article published in BMC Neurology, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment
Published in
BMC Neurology, August 2015
DOI 10.1186/s12883-015-0403-4
Pubmed ID
Authors

Brittany N. Dugger, Kathryn Davis, Michael Malek-Ahmadi, Joseph G. Hentz, Shawn Sandhu, Thomas G. Beach, Charles H. Adler, Richard J. Caselli, Travis A. Johnson, Geidy E. Serrano, Holly A. Shill, Christine Belden, Erika Driver-Dunckley, John N. Caviness, Lucia I. Sue, Sandra Jacobson, Jessica Powell, Marwan N. Sabbagh

Abstract

Although there are studies investigating the pathologic origins of mild cognitive impairment (MCI), they have revolved around comparisons to normal elderly individuals or those with Alzheimer's disease (AD) or other dementias. There are few studies directly comparing the comprehensive neuropathology of amnestic (aMCI) and nonamnestic (naMCI) MCI. The database of the Brain and Body Donation Program ( www.brainandbodydonationprogram.org ), a longitudinal clinicopathological study of normal aging and neurodegenerative disorders, was queried for subjects who were carrying a diagnosis of aMCI or naMCI at the time of autopsy. Neuropathological lesions, including neuritic plaques, neurofibrillary tangles (NFTs), Lewy bodies (LBs), infarcts, cerebral white matter rarefaction (CWMR), cerebral amyloid angiopathy (CAA), and concurrent major clinicopathological diagnoses, including Parkinson's disease (PD) were analyzed. Thirty four subjects with aMCI and 15 naMCI met study criteria. Subjects with aMCI were older at death (88 vs. 83 years of age, p = 0.03). Individuals with naMCI had higher densities of LBs within the temporal lobe (p = 0.04) while subjects with aMCI had a propensity for increased NFTs in parietal and temporal lobes (p values = 0.07). After adjusting for age at death, the only significant difference was greater densities of temporal lobe NFTs within the aMCI group. Other regional pathology scores for plaques, NFTs, and LBs were similar between groups. Subjects met clinico-pathological criteria for co-existent PD in 24 % aMCI and 47 % naMCI while neuropathological criteria for AD were met in equal percentages of aMCI and of naMCI cases (53 %); these proportional differences were not significant (p values > 0.35). Furthermore, regardless of amnestic status, there was a greater presence of CAA (71 % of MCI with executive dysfunction vs. 39 % without p = 0.03) and a greater presence of CWMR (81 % of MCI with executive dysfunction and 54 % without p = 0.046) in MCI cases with executive dysfunction. No single pathologic entity strongly dichotomized MCI groups, perhaps due to the pathologic heterogeneity found within both entities. However, these data suggest the possibility for naMCI to have a propensity for increased LBs and aMCI for increased NFTs in select anatomic regions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Philippines 1 1%
Italy 1 1%
Unknown 70 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 15%
Student > Master 10 14%
Researcher 9 13%
Student > Doctoral Student 4 6%
Student > Bachelor 3 4%
Other 10 14%
Unknown 25 35%
Readers by discipline Count As %
Medicine and Dentistry 15 21%
Psychology 12 17%
Neuroscience 11 15%
Computer Science 2 3%
Nursing and Health Professions 2 3%
Other 7 10%
Unknown 23 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2015.
All research outputs
#3,255,897
of 23,881,329 outputs
Outputs from BMC Neurology
#385
of 2,532 outputs
Outputs of similar age
#42,614
of 268,415 outputs
Outputs of similar age from BMC Neurology
#10
of 53 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,532 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,415 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.