↓ Skip to main content

Status of newborn screening and follow up investigations for Mucopolysaccharidoses I and II in Taiwan

Overview of attention for article published in Orphanet Journal of Rare Diseases, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Status of newborn screening and follow up investigations for Mucopolysaccharidoses I and II in Taiwan
Published in
Orphanet Journal of Rare Diseases, May 2018
DOI 10.1186/s13023-018-0816-4
Pubmed ID
Authors

Chih-Kuang Chuang, Hsiang-Yu Lin, Tuan-Jen Wang, You-Hsin Huang, Min-Ju Chan, Hsuan-Chieh Liao, Yun-Ting Lo, Li-Yun Wang, Ru-Yi Tu, Yi-Ya Fang, Tzu-Lin Chen, Hui-Chen Ho, Chuan-Chi Chiang, Shuan-Pei Lin

Abstract

Mucopolysaccharidoses (MPS) are lysosomal storage diseases in which mutations of genes encoding for lysosomal enzymes cause defects in the degradation of glycosaminoglycans (GAGs). The accumulation of GAGs in lysosomes results in cellular dysfunction and clinical abnormalities. The early initiation of enzyme replacement therapy (ERT) can slow or prevent the development of severe clinical manifestations. MPS I and II newborn screening has been available in Taiwan since August 2015. Infants who failed the recheck at recall were referred to MacKay Memorial Hospital for a detailed confirmatory diagnosis. From August 2015 to November 2017, 294,196 and 153,032 infants were screened using tandem mass spectrometry for MPS I and MPS II, respectively. Of these infants, 84 suspected cases (eight for MPS I; 76 for MPS II) were referred for confirmation. Urinary first-line biochemistry examinations were performed first, including urinary GAG quantification, two-dimensional electrophoresis, and tandem mass spectrometry assay for predominant disaccharides derived from GAGs. If the results were positive, a confirmative diagnosis was made according to the results of leukocyte enzymatic assay and molecular DNA analysis. Leukocyte pellets were isolated from EDTA blood and used for fluorescent α-iduronidase (IDUA) or iduronate-2-sulfatase (IDS) enzymatic assay. DNA sequencing analysis was also performed. Normal IDS and IDUA enzyme activities were found in most of the referred cases except for four who were strongly suspected of having MPS I and three who were strongly suspected of having MPS II. Of these infants, three with novel mutations of the IDS gene (c.817C > T, c.1025A > G, and c.311A > T) and four with two missense mutations of the IDUA gene (C.300-3C > G, c.1874A > C; c.1037 T > G, c.1091C > T) showed significant deficiencies in IDS and IDUA enzyme activities (< 5% of mean normal activity), respectively. Urinary dermatan sulfate and heparan sulfate quantitative analyses by tandem mass spectrometry also demonstrated significant elevations. The prevalence rates of MPS I and MPS II in Taiwan were 1.35 and 1.96 per 100,000 live births, respectively. The early initiation of ERT for MPS can result in better clinical outcomes. An early confirmatory diagnosis increases the probability of receiving appropriate medical care such as ERT quickly enough to avoid irreversible manifestations. All high risk infants identified in this study so far remain asymptomatic and are presumed to be affected with the attenuated disease variants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 14%
Student > Bachelor 6 11%
Student > Ph. D. Student 6 11%
Student > Master 6 11%
Other 4 7%
Other 9 16%
Unknown 17 30%
Readers by discipline Count As %
Medicine and Dentistry 15 27%
Biochemistry, Genetics and Molecular Biology 8 14%
Nursing and Health Professions 5 9%
Agricultural and Biological Sciences 4 7%
Immunology and Microbiology 3 5%
Other 2 4%
Unknown 19 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2018.
All research outputs
#15,538,060
of 23,092,602 outputs
Outputs from Orphanet Journal of Rare Diseases
#1,819
of 2,648 outputs
Outputs of similar age
#210,509
of 330,799 outputs
Outputs of similar age from Orphanet Journal of Rare Diseases
#33
of 49 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,648 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,799 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.