↓ Skip to main content

DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis

Overview of attention for article published in BMC Genomics, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
118 Dimensions

Readers on

mendeley
126 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis
Published in
BMC Genomics, August 2015
DOI 10.1186/s12864-015-1833-5
Pubmed ID
Authors

Naoki Kubo, Hidehiro Toh, Kenjiro Shirane, Takayuki Shirakawa, Hisato Kobayashi, Tetsuya Sato, Hidetoshi Sone, Yasuyuki Sato, Shin-ichi Tomizawa, Yoshinori Tsurusaki, Hiroki Shibata, Hirotomo Saitsu, Yutaka Suzuki, Naomichi Matsumoto, Mikita Suyama, Tomohiro Kono, Kazuyuki Ohbo, Hiroyuki Sasaki

Abstract

In the male germline, neonatal prospermatogonia give rise to spermatogonia, which include stem cell population (undifferentiated spermatogonia) that supports continuous spermatogenesis in adults. Although the levels of DNA methyltransferases change dynamically in the neonatal and early postnatal male germ cells, detailed genome-wide DNA methylation profiles of these cells during the stem cell formation and differentiation have not been reported. To understand the regulation of spermatogonial stem cell formation and differentiation, we examined the DNA methylation and gene expression dynamics of male mouse germ cells at the critical stages: neonatal prospermatogonia, and early postntal (day 7) undifferentiated and differentiating spermatogonia. We found large partially methylated domains similar to those found in cancer cells and placenta in all these germ cells, and high levels of non-CG methylation and 5-hydroxymethylcytosines in neonatal prospermatogonia. Although the global CG methylation levels were stable in early postnatal male germ cells, and despite the reported scarcity of differential methylation in the adult spermatogonial stem cells, we identified many regions showing stage-specific differential methylation in and around genes important for stem cell function and spermatogenesis. These regions contained binding sites for specific transcription factors including the SOX family members. Our findings show a distinctive and dynamic regulation of DNA methylation during spermatogonial stem cell formation and differentiation in the neonatal and early postnatal testes. Furthermore, we revealed a unique accumulation and distribution of non-CG methylation and 5hmC marks in neonatal prospermatogonia. These findings contrast with the reported scarcity of differential methylation in adult spermatogonial stem cell differentiation and represent a unique phase of male germ cell development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 126 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 2%
United Kingdom 1 <1%
Switzerland 1 <1%
Unknown 121 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 23%
Researcher 26 21%
Student > Master 10 8%
Student > Bachelor 10 8%
Other 8 6%
Other 21 17%
Unknown 22 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 40 32%
Agricultural and Biological Sciences 39 31%
Medicine and Dentistry 7 6%
Environmental Science 3 2%
Neuroscience 3 2%
Other 9 7%
Unknown 25 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2020.
All research outputs
#5,561,114
of 23,116,036 outputs
Outputs from BMC Genomics
#2,224
of 10,708 outputs
Outputs of similar age
#64,197
of 266,611 outputs
Outputs of similar age from BMC Genomics
#56
of 252 outputs
Altmetric has tracked 23,116,036 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,708 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,611 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 252 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.