↓ Skip to main content

Case-control meta-analysis of blood DNA methylation and autism spectrum disorder

Overview of attention for article published in Molecular Autism, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
10 X users
facebook
1 Facebook page

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
174 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Case-control meta-analysis of blood DNA methylation and autism spectrum disorder
Published in
Molecular Autism, June 2018
DOI 10.1186/s13229-018-0224-6
Pubmed ID
Authors

Shan V. Andrews, Brooke Sheppard, Gayle C. Windham, Laura A. Schieve, Diana E. Schendel, Lisa A. Croen, Pankaj Chopra, Reid S. Alisch, Craig J. Newschaffer, Stephen T. Warren, Andrew P. Feinberg, M. Daniele Fallin, Christine Ladd-Acosta

Abstract

Several reports have suggested a role for epigenetic mechanisms in ASD etiology. Epigenome-wide association studies (EWAS) in autism spectrum disorder (ASD) may shed light on particular biological mechanisms. However, studies of ASD cases versus controls have been limited by post-mortem timing and severely small sample sizes. Reports from in-life sampling of blood or saliva have also been very limited in sample size and/or genomic coverage. We present the largest case-control EWAS for ASD to date, combining data from population-based case-control and case-sibling pair studies. DNA from 968 blood samples from children in the Study to Explore Early Development (SEED 1) was used to generate epigenome-wide array DNA methylation (DNAm) data at 485,512 CpG sites for 453 cases and 515 controls, using the Illumina 450K Beadchip. The Simons Simplex Collection (SSC) provided 450K array DNAm data on an additional 343 cases and their unaffected siblings. We performed EWAS meta-analysis across results from the two data sets, with adjustment for sex and surrogate variables that reflect major sources of biological variation and technical confounding such as cell type, batch, and ancestry. We compared top EWAS results to those from a previous brain-based analysis. We also tested for enrichment of ASD EWAS CpGs for being targets of meQTL associations using available SNP genotype data in the SEED sample. In this meta-analysis of blood-based DNA from 796 cases and 858 controls, no single CpG met a Bonferroni discovery threshold of p < 1.12 × 10- 7. Seven CpGs showed differences at p < 1 × 10- 5 and 48 at 1 × 10- 4. Of the top 7, 5 showed brain-based ASD associations as well, often with larger effect sizes, and the top 48 overall showed modest concordance (r = 0.31) in direction of effect with cerebellum samples. Finally, we observed suggestive evidence for enrichment of CpG sites controlled by SNPs (meQTL targets) among the EWAS CpG hits, which was consistent across EWAS and meQTL discovery p value thresholds. No single CpG site showed a large enough DNAm difference between cases and controls to achieve epigenome-wide significance in this sample size. However, our results suggest the potential to observe disease associations from blood-based samples. Among the seven sites achieving suggestive statistical significance, we observed consistent, and stronger, effects at the same sites among brain samples. Discovery-oriented EWAS for ASD using blood samples will likely need even larger samples and unified genetic data to further understand DNAm differences in ASD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 174 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 174 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 14%
Student > Bachelor 24 14%
Student > Master 21 12%
Researcher 17 10%
Student > Postgraduate 9 5%
Other 23 13%
Unknown 55 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 33 19%
Medicine and Dentistry 23 13%
Psychology 13 7%
Neuroscience 9 5%
Agricultural and Biological Sciences 8 5%
Other 26 15%
Unknown 62 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2021.
All research outputs
#2,301,754
of 23,726,221 outputs
Outputs from Molecular Autism
#227
of 686 outputs
Outputs of similar age
#48,739
of 330,378 outputs
Outputs of similar age from Molecular Autism
#7
of 10 outputs
Altmetric has tracked 23,726,221 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 686 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 28.5. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,378 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.