↓ Skip to main content

Prior knowledge driven Granger causality analysis on gene regulatory network discovery

Overview of attention for article published in BMC Bioinformatics, August 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prior knowledge driven Granger causality analysis on gene regulatory network discovery
Published in
BMC Bioinformatics, August 2015
DOI 10.1186/s12859-015-0710-1
Pubmed ID
Authors

Shun Yao, Shinjae Yoo, Dantong Yu

Abstract

Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, the propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a " 1+1>2" effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast's responses to different levels of glucose. Our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home .

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Brazil 1 3%
Unknown 36 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 37%
Researcher 7 18%
Professor 3 8%
Student > Master 3 8%
Student > Bachelor 2 5%
Other 4 11%
Unknown 5 13%
Readers by discipline Count As %
Computer Science 9 24%
Agricultural and Biological Sciences 9 24%
Biochemistry, Genetics and Molecular Biology 6 16%
Mathematics 2 5%
Engineering 2 5%
Other 6 16%
Unknown 4 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2020.
All research outputs
#13,174,456
of 23,577,761 outputs
Outputs from BMC Bioinformatics
#3,692
of 7,418 outputs
Outputs of similar age
#118,326
of 269,574 outputs
Outputs of similar age from BMC Bioinformatics
#54
of 123 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,574 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.