↓ Skip to main content

Characterizing interactions of Leptospira interrogans with proximal renal tubule epithelial cells

Overview of attention for article published in BMC Microbiology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterizing interactions of Leptospira interrogans with proximal renal tubule epithelial cells
Published in
BMC Microbiology, July 2018
DOI 10.1186/s12866-018-1206-8
Pubmed ID
Authors

Takayoshi Yamaguchi, Naomi Higa, Nobuhiko Okura, Arina Matsumoto, Idam Hermawan, Tetsu Yamashiro, Toshihiko Suzuki, Claudia Toma

Abstract

Leptospira interrogans is a pathogenic, spirochetal bacterium that is responsible for leptospirosis, an emerging worldwide zoonosis. Leptospires colonize the renal proximal tubules and chronically infect the kidney. Live bacteria are excreted into urine, contaminating the environment. While it is well known that leptospires can persist in the kidneys without signs of disease for several months, the interactions of leptospires with the proximal renal epithelial tubule cells that allow the chronic renal colonization have not been elucidated yet. In the present study, we compared the interactions between a virulent, low passage (LP) strain and a cultured-attenuated, high passage (HP) strain with renal proximal tubule epithelial cells (RPTECs) to elucidate the strategies used by Leptospira to colonize the kidney. Kinetics analysis of kidney colonization in a mouse model of chronic infection performed by quantitative real-time PCR and immunofluorescence, showed that the LP strain reached the kidney by 3 days post infection (pi) and attached to the basal membrane side of the renal epithelial cells. At 10 days pi, some leptospires were attached to the luminal side of the tubular epithelia and the number of colonizing leptospires gradually increased. On the other hand, the HP strain was cleared during hematogenous dissemination and did not colonize the kidney. Transmission electron microscopy analysis of LP-infected kidneys at 25 days pi showed aggregated leptospires and membrane vesicles attached to the epithelial brush border. Leptospiral kidney colonization altered the organization of the RPTEC brush border. An in vitro model of infection using TCMK-1 cells, showed that leptospiral infection induced a host stress response, which is delayed in LP-infected cells. After hematogenous dissemination, leptospires create protective and replicative niches in the base membrane and luminal sides of the RPTECs. During the long-term colonization, leptospires attached to the RPTEC brush borders and membrane vesicles might be involved in the formation of a biofilm-like structure in vivo. Our results also suggested that the virulent strain is able to manipulate host cell stress responses to promote renal colonization.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 23%
Student > Master 9 14%
Student > Doctoral Student 7 11%
Researcher 6 9%
Professor 3 5%
Other 7 11%
Unknown 19 29%
Readers by discipline Count As %
Immunology and Microbiology 10 15%
Veterinary Science and Veterinary Medicine 9 14%
Biochemistry, Genetics and Molecular Biology 8 12%
Agricultural and Biological Sciences 6 9%
Medicine and Dentistry 5 8%
Other 7 11%
Unknown 21 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 May 2019.
All research outputs
#17,982,872
of 23,094,276 outputs
Outputs from BMC Microbiology
#2,027
of 3,216 outputs
Outputs of similar age
#237,075
of 328,026 outputs
Outputs of similar age from BMC Microbiology
#21
of 41 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,216 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,026 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.