↓ Skip to main content

Fine-scale genetic structure of the European bitterling at the intersection of three major European watersheds

Overview of attention for article published in BMC Ecology and Evolution, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fine-scale genetic structure of the European bitterling at the intersection of three major European watersheds
Published in
BMC Ecology and Evolution, July 2018
DOI 10.1186/s12862-018-1219-9
Pubmed ID
Authors

Veronika Bartáková, Josef Bryja, Martin Reichard

Abstract

Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure. Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin. Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 24%
Student > Ph. D. Student 8 22%
Student > Master 3 8%
Other 2 5%
Student > Doctoral Student 2 5%
Other 6 16%
Unknown 7 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 30%
Environmental Science 6 16%
Biochemistry, Genetics and Molecular Biology 4 11%
Unspecified 3 8%
Immunology and Microbiology 1 3%
Other 3 8%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2018.
All research outputs
#22,767,715
of 25,385,509 outputs
Outputs from BMC Ecology and Evolution
#3,511
of 3,714 outputs
Outputs of similar age
#299,457
of 341,350 outputs
Outputs of similar age from BMC Ecology and Evolution
#50
of 51 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,350 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.