↓ Skip to main content

Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1

Overview of attention for article published in Fibrogenesis & Tissue Repair, June 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1
Published in
Fibrogenesis & Tissue Repair, June 2015
DOI 10.1186/s13069-015-0028-7
Pubmed ID
Authors

Rebecca Lee, Charles Reese, Beth Perry, Jonathan Heywood, Michael Bonner, Marina Zemskova, Richard M. Silver, Stanley Hoffman, Elena Tourkina

Abstract

A major health disparity suffered by African Americans (AA) is a predisposition toward fibrotic diseases of the skin, lung, and other organs. We previously showed that healthy AA and scleroderma (systemic sclerosis (SSc)) patient monocytes share biochemical and functional differences from control Caucasian (C) monocytes that may predispose AA to SSc. The central difference is a decrease in caveolin-1. Low caveolin-1 levels promote monocyte migration, their differentiation into fibrocytes, and fibrocyte recruitment into fibrotic tissues. Here we have greatly expanded our studies on the mechanism of action in fibrosis of caveolin-1 in AA and SSc monocytes. Expression of chemokine receptors (CCR1, CCR2, CCR3) is enhanced in healthy AA monocytes compared to healthy C monocytes and further increased in SSc monocytes. A parallel increase in function occurs assessed by migration toward chemokines MCP-1 and MCP-3. Chemokine-receptor expression and function are inhibited by the caveolin-1 scaffolding domain peptide (CSD) via its action as a surrogate for caveolin-1. Cells bearing chemokine receptors accumulate to high levels in fibrotic lung and skin tissue from SSc patients and from mice treated with bleomycin. This accumulation is almost completely blocked in mice treated with CSD. In signaling studies, Src activation is enhanced in AA monocytes compared to C monocytes and further increased in SSc monocytes. Lyn is also highly activated in SSc monocytes. Src and Lyn activation are inhibited by CSD. Src and Lyn's roles in monocyte migration were demonstrated using specific inhibitors. To the best of our knowledge, this is the first report that the expression and function of CCR1, CCR2, and CCR3 are upregulated in monocytes from healthy AA and from SSc patients via molecular mechanisms involving caveolin-1, Src/Lyn, and MEK/ERK. The results suggest that the migration/recruitment of monocytes and fibrocytes into fibrotic tissues, mediated at least in part by CCR1, CCR2, and CCR3, plays a major role in the progression of lung and skin fibrosis and in the predisposition of AA to fibrotic diseases. Our findings further suggest that chemokine receptors and signaling molecules, particularly caveolin-1, that control their expression/function are promising targets for treating fibrotic diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Other 5 19%
Student > Doctoral Student 3 12%
Student > Postgraduate 3 12%
Student > Ph. D. Student 2 8%
Other 4 15%
Unknown 4 15%
Readers by discipline Count As %
Medicine and Dentistry 7 27%
Biochemistry, Genetics and Molecular Biology 5 19%
Agricultural and Biological Sciences 3 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 8%
Sports and Recreations 2 8%
Other 3 12%
Unknown 4 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2017.
All research outputs
#2,880,033
of 22,826,360 outputs
Outputs from Fibrogenesis & Tissue Repair
#9
of 83 outputs
Outputs of similar age
#38,231
of 264,368 outputs
Outputs of similar age from Fibrogenesis & Tissue Repair
#1
of 4 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 83 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,368 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them