↓ Skip to main content

Hair shaft structures in EDAR induced ectodermal dysplasia

Overview of attention for article published in BMC Medical Genetics, September 2015
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hair shaft structures in EDAR induced ectodermal dysplasia
Published in
BMC Medical Genetics, September 2015
DOI 10.1186/s12881-015-0227-5
Pubmed ID
Authors

C. Stecksén-Blicks, C. Falk Kieri, D. Hägg, M. Schmitt-Egenolf

Abstract

Mutations in the EDAR-gene cause hypohidrotic ectodermal dysplasia with defects in ectodermal appendage development including teeth, skin, exocrine glands and hair. Hair defects are sparsely described in genetically defined samples. The aim of this study was to investigate hair structures in three families with a heterozygous c.1072C > T mutation in the EDAR gene using scanning electron microscopy. Three Swedish families, where some members had a known c.1072C > T mutation in the EDAR gene with an autosomal dominant inheritance (AD) were included (n = 37) of which 17 carried the mutation and 20 did not. Thirty-two age and gender matched not related individuals served as a reference group. Confirmation of the c.1072C > T mutation in the EDAR gene was performed by genomic sequencing. Hairs were subjected to blinded scanning electron microscopy examination and hair defects were categorized and scored. The minimum and maximum diameters of hairs were lower in the mutation group compared to the reference group. Subjects in the mutation group had to greater extent deep deformations in hair shafts compared to the non-mutation group and the reference group (p < 0.001). Individuals with a c.1072C > T mutation in the EDAR-gene displayed more hair shaft deformations confirming the role of EDAR for human hair follicle development and postnatal hair follicle cycling.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 23%
Student > Ph. D. Student 2 15%
Student > Doctoral Student 1 8%
Professor 1 8%
Researcher 1 8%
Other 1 8%
Unknown 4 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 31%
Medicine and Dentistry 3 23%
Agricultural and Biological Sciences 1 8%
Engineering 1 8%
Unknown 4 31%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2015.
All research outputs
#20,290,425
of 22,826,360 outputs
Outputs from BMC Medical Genetics
#842
of 1,029 outputs
Outputs of similar age
#224,273
of 267,016 outputs
Outputs of similar age from BMC Medical Genetics
#30
of 40 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,029 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,016 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.