↓ Skip to main content

Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
11 X users
facebook
2 Facebook pages

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation
Published in
Critical Reviews in Diagnostic Imaging, September 2015
DOI 10.1186/s12968-015-0179-0
Pubmed ID
Authors

Gabriella Captur, Audrey L. Karperien, Chunming Li, Filip Zemrak, Catalina Tobon-Gomez, Xuexin Gao, David A. Bluemke, Perry M. Elliott, Steffen E. Petersen, James C. Moon

Abstract

Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales. To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of fractal analysis have been published in MR imaging of the brain.This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful context within the realms of Euclidean and topological space, and defines its role in digital image processing. It summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the CMR community.By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists (clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next generation of intelligent quantitative cardiac imaging tools.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 22%
Student > Ph. D. Student 12 20%
Professor > Associate Professor 8 13%
Other 5 8%
Student > Master 5 8%
Other 7 12%
Unknown 10 17%
Readers by discipline Count As %
Medicine and Dentistry 19 32%
Engineering 7 12%
Neuroscience 4 7%
Agricultural and Biological Sciences 3 5%
Computer Science 3 5%
Other 7 12%
Unknown 17 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2020.
All research outputs
#6,351,772
of 25,728,855 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#418
of 1,386 outputs
Outputs of similar age
#67,909
of 279,725 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#10
of 25 outputs
Altmetric has tracked 25,728,855 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,386 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,725 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.