↓ Skip to main content

The O-antigen negative ∆wbaV mutant of Salmonella enterica serovar Enteritidis shows adaptive resistance to antimicrobial peptides and elicits colitis in streptomycin pretreated mouse model

Overview of attention for article published in Gut Pathogens, September 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The O-antigen negative ∆wbaV mutant of Salmonella enterica serovar Enteritidis shows adaptive resistance to antimicrobial peptides and elicits colitis in streptomycin pretreated mouse model
Published in
Gut Pathogens, September 2015
DOI 10.1186/s13099-015-0070-4
Pubmed ID
Authors

Sangeeta Jaiswal, Niladri Bhusan Pati, Manupriyam Dubey, Chandrashekhar Padhi, Prakash Kumar Sahoo, Shilpa Ray, Aryashree Arunima, Nirmal Kumar Mohakud, Mrutyunjay Suar

Abstract

Salmonella enterica serovar Enteritidis, the most common cause of human gastroenteritis, employs several virulence factors including lipopolysaccharide (LPS) for infection and establishment of disease inside the host. The LPS of S. enterica serovar Enteritidis consists of lipid A, core oligosaccharide and O-antigen (OAg). The OAg consists of repeating units containing different sugars. The sugars of OAg are synthesized and assembled by a set of enzymes encoded by genes organized into clusters. Present study focuses on the effect of deletion of genes involved in biosynthesis of OAg repeating units on resistance to antimicrobial peptides and virulence in mice. In the present study, the OAg biosynthesis was impaired by deleting tyv, prt and wbaV genes involved in tyvelose biosynthesis and its transfer to OAg. The virulence phenotype of resulting mutants was evaluated by assessing resistance to antimicrobial peptides, serum complement, adhesion, invasion and in vivo colonization. Deletion of the above three genes resulted in the production of OAg-negative LPS. All the OAg-negative mutants showed phenotype reported for rough strains. Interestingly, ΔwbaV mutant showed increased resistance against antimicrobial peptides and normal human serum. In addition, the ΔwbaV mutant also showed increased adhesion and invasion as compared to the other two O-Ag negative mutants Δtyv and Δprt. In vivo experiments also confirmed the increased virulent phenotype of ΔwbaV mutant as compared to Δprt mutant. OAg-negative mutants are known to be avirulent; however, this study demonstrates that certain OAg negative mutants e.g. ∆wbaV may also show resistance to antimicrobial peptides and cause colitis in Streptomyces pretreated mouse model.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 27%
Researcher 7 27%
Student > Bachelor 2 8%
Student > Master 2 8%
Other 1 4%
Other 3 12%
Unknown 4 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 23%
Immunology and Microbiology 6 23%
Agricultural and Biological Sciences 4 15%
Medicine and Dentistry 2 8%
Unspecified 1 4%
Other 3 12%
Unknown 4 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2015.
All research outputs
#17,772,019
of 22,826,360 outputs
Outputs from Gut Pathogens
#332
of 522 outputs
Outputs of similar age
#180,058
of 266,946 outputs
Outputs of similar age from Gut Pathogens
#6
of 8 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 522 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,946 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.