↓ Skip to main content

Detecting genotyping errors at Schistosoma japonicum microsatellites with pedigree information

Overview of attention for article published in Parasites & Vectors, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detecting genotyping errors at Schistosoma japonicum microsatellites with pedigree information
Published in
Parasites & Vectors, September 2015
DOI 10.1186/s13071-015-1074-0
Pubmed ID
Authors

Yu-Meng Gao, Da-Bing Lu, Huan Ding, Poppy H. L. Lamberton

Abstract

Schistosomiasis japonica remains a major public health problem in China. Integrating molecular analyses, such as population genetic analyses, of the parasite into the on-going surveillance programs is helpful in exploring the factors causing the persistence and/or spread of Schistosoma japonicum. However, genotyping errors can seriously affect the results of such studies, unless accounted for in the analyses. We assessed the genotyping errors (missing alleles or false alleles) of seven S. japonicum microsatellites, using a pedigree data approach for schistosome miracidia, which were stored on Whatman FTA cards. Among 107 schistosome miracidia successfully genotyped, resulting in a total of 715 loci calls, a total of 31 genotyping errors were observed with 25.2 % of the miracidia having at least one error. The error rate per locus differed among loci, which ranged from 0 to 9.8 %, with the mean error rate 4.3 % over loci. With the parentage analysis software Cervus, the assignment power with these seven markers was estimated to be 89.5 % for one parent and 99.9 % for a parent pair. One locus was inferred to have a high number of null alleles and a second with a high mistyping rate. To the authors' knowledge, this is the first time that S. japonicum pedigrees have been used in an assessment of genotyping errors of microsatellite markers. The observed locus-specific error rate will benefit downstream epidemiological or ecological analyses of S. japonicum with the markers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Lecturer 2 13%
Student > Doctoral Student 2 13%
Researcher 2 13%
Student > Master 2 13%
Other 1 7%
Unknown 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 20%
Agricultural and Biological Sciences 3 20%
Business, Management and Accounting 1 7%
Nursing and Health Professions 1 7%
Social Sciences 1 7%
Other 3 20%
Unknown 3 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2015.
All research outputs
#14,825,310
of 22,828,180 outputs
Outputs from Parasites & Vectors
#3,081
of 5,463 outputs
Outputs of similar age
#147,663
of 267,498 outputs
Outputs of similar age from Parasites & Vectors
#75
of 148 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,463 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,498 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 148 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.