↓ Skip to main content

Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing

Overview of attention for article published in BMC Genomic Data, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing
Published in
BMC Genomic Data, July 2018
DOI 10.1186/s12863-018-0631-x
Pubmed ID
Authors

Muhammad L Aslam, Roberta Carraro, Anastasia Bestin, Sophie Cariou, Anna K. Sonesson, Jean-Sébastien Bruant, Pierrick Haffray, Luca Bargelloni, Theo H. E. Meuwissen

Abstract

Photobacteriosis is an infectious disease developed by a Gram-negative bacterium Photobacterium damselae subsp. piscicida (Phdp), which may cause high mortalities (90-100%) in sea bream. Selection and breeding for resistance against infectious diseases is a highly valuable tool to help prevent or diminish disease outbreaks, and currently available advanced selection methods with the application of genomic information could improve the response to selection. An experimental group of sea bream juveniles was derived from a Ferme Marine de Douhet (FMD, Oléron Island, France) selected line using ~ 109 parents (~ 25 females and 84 males). This group of 1187 individuals represented 177 full-sib families with 1-49 sibs per family, which were challenged with virulent Phdp for a duration of 18 days, and mortalities were recorded within this duration. Tissue samples were collected from the parents and the recorded offspring for DNA extraction, library preparation using 2b-RAD and genotyping by sequencing. Genotypic data was used to develop a linkage map, genome wide association analysis and for the estimation of breeding values. The analysis of genetic variation for resistance against Phdp revealed moderate genomic heritability with estimates of ~ 0.32. A genome-wide association analysis revealed a quantitative trait locus (QTL) including 11 SNPs at linkage group 17 presenting significant association to the trait with p-value crossing genome-wide Bonferroni corrected threshold P ≤ 2.22e-06. The proportion total genetic variance explained by the single top most significant SNP was ranging from 13.28-16.14% depending on the method used to compute the variance. The accuracies of predicting breeding values obtained using genomic vs. pedigree information displayed 19-24% increase when using genomic information. The current study demonstrates that SNPs-based genotyping of a sea bream population with 2b-RAD approach is effective at capturing the genetic variation for resistance against Phdp. Prediction accuracies obtained using genomic information were significantly higher than the accuracies obtained using pedigree information which highlights the importance and potential of genomic selection in commercial breeding programs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 23%
Student > Ph. D. Student 9 23%
Lecturer 2 5%
Other 1 3%
Student > Doctoral Student 1 3%
Other 4 10%
Unknown 13 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 41%
Biochemistry, Genetics and Molecular Biology 4 10%
Medicine and Dentistry 2 5%
Nursing and Health Professions 1 3%
Unspecified 1 3%
Other 2 5%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2018.
All research outputs
#14,920,631
of 25,385,509 outputs
Outputs from BMC Genomic Data
#453
of 1,204 outputs
Outputs of similar age
#175,711
of 339,438 outputs
Outputs of similar age from BMC Genomic Data
#11
of 24 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,438 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.