↓ Skip to main content

Modelling population-level impact to inform target product profiles for childhood malaria vaccines

Overview of attention for article published in BMC Medicine, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

policy
1 policy source
twitter
36 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modelling population-level impact to inform target product profiles for childhood malaria vaccines
Published in
BMC Medicine, July 2018
DOI 10.1186/s12916-018-1095-6
Pubmed ID
Authors

Alexandra B. Hogan, Peter Winskill, Robert Verity, Jamie T. Griffin, Azra C. Ghani

Abstract

The RTS,S/AS01 vaccine for Plasmodium falciparum malaria demonstrated moderate efficacy in 5-17-month-old children in phase 3 trials, and from 2018, the vaccine will be evaluated through a large-scale pilot implementation program. Work is ongoing to optimise this vaccine, with higher efficacy for a different schedule demonstrated in a phase 2a challenge study. The objective of our study was to investigate the population-level impact of a modified RTS,S/AS01 schedule and dose amount in order to inform the target product profile for a second-generation malaria vaccine. We used a mathematical modelling approach as the basis for our study. We simulated the changing anti-circumsporozoite antibody titre following vaccination and related the titre to vaccine efficacy. We then implemented this efficacy profile within an individual-based model of malaria transmission. We compared initial efficacy, duration and dose timing, and evaluated the potential public health impact of a modified vaccine in children aged 5-17 months, measuring clinical cases averted in children younger than 5 years. In the first decade of delivery, initial efficacy was associated with a higher reduction in childhood clinical cases compared to vaccine duration. This effect was more pronounced in high transmission settings and was due to the efficacy benefit occurring in younger ages where disease burden is highest. However, the low initial efficacy and long duration schedule averted more cases across all age cohorts if a longer time horizon was considered. We observed an age-shifting effect due to the changing immunological profile in higher transmission settings, in scenarios where initial efficacy was higher, and the fourth dose administered earlier. Our findings indicate that, for an imperfect childhood malaria vaccine with suboptimal efficacy, it may be advantageous to prioritise initial efficacy over duration. We predict that a modified vaccine could outperform the current RTS,S/AS01, although fourth dose timing will affect the age group that derives the greatest benefit. Further, the outcome measure and timeframe over which a vaccine is assessed are important when prioritising vaccine elements. This study provides insight into the most important characteristics of a malaria vaccine for at-risk groups and shows how distinct vaccine properties translate to public health outcomes. These findings may be used to prioritise target product profile elements for second-generation childhood malaria vaccines.

X Demographics

X Demographics

The data shown below were collected from the profiles of 36 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 25%
Student > Master 9 16%
Student > Ph. D. Student 6 11%
Student > Bachelor 4 7%
Student > Postgraduate 3 5%
Other 3 5%
Unknown 17 30%
Readers by discipline Count As %
Medicine and Dentistry 11 20%
Mathematics 5 9%
Biochemistry, Genetics and Molecular Biology 4 7%
Nursing and Health Professions 4 7%
Chemistry 2 4%
Other 9 16%
Unknown 21 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2022.
All research outputs
#1,522,842
of 25,292,646 outputs
Outputs from BMC Medicine
#1,084
of 3,978 outputs
Outputs of similar age
#31,283
of 333,744 outputs
Outputs of similar age from BMC Medicine
#28
of 65 outputs
Altmetric has tracked 25,292,646 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,978 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 45.6. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,744 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.